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A number of studies in recent years have investigated empirical approaches to the
production of confidence intervals for population projections. The critical assumption
underlying these approaches is that the distribution of forecast errors remains stable
over time. In this article, we evaluate this assumption by making population
projections for states for a number of time periods during the 20th century, comparing
these projections with census enumerations to determine forecast errors, and analyzing
the stability of the resulting error distributions over time. These data are then used to
construct and test empirical confidence limits. We find that in this sample the
distribution of absolute percentage errors remained relatively stable over time and data
on past forecast errors provided very useful predictions of future forecast crrors.

A number of recent studies have investigated empirical approaches to the production
and use of confidence intervals for population projections. Some have used time series
models in which historical population data were fit to autoregressive or moving average
processes and future values were made to depend on a weighted average of past values and
a random error term (e.g., Lee, 1974; Saboia, 1974; Voss et al., 1981). Others have focused
directly on the errors of projections made in the past (e.g., Keyfitz, 1981; Smith, 1987; Stoto,
1983). Under either of these approaches, the critical assumption underlying the construction
and use of confidence intervals for population projections is that the distribution of forecast
errors remains stable over time.

Is that a reasonable assumption? To date, little research has been directed toward
answering this question. In the present study, we analyze the distribution of population
forecast errors for states for a number of different time periods during the 20th century. Our
objectives are twofold: to determine the extent to which these distributions have remained
stable over time and to evaluate the validity of using data on the distribution of past forecast
errors to predict the distribution of future forecast errors. The next section describes the data
and techniques used to make the population projections analyzed in this study. The third
section discusses the characteristics of forecast errors and the stability of those errors over
time. The fourth section uses data on the distribution of past forecast errors to construct
empirical confidence limits and tests their performance in predicting the range of future
forecast errors. The fifth section draws several conclusions regarding stability in the
distribution of forecast errors over time and the potential usefulness of developing empirical
confidence limits for population projections.

Demographers often draw a distinction between the terms “projection” and “forecast.”
A projection is typically defined as the numerical outcome of a specific set of assumptions
regarding future trends, whereas a forecast indicates the specific projection that the author
believes is most likely to provide an accurate prediction of future population (e.g., Irwin,
1977; Isserman and Fisher, 1984; Keyfitz, 1972). In this article, projection refers to the
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future population implied by a particular technique and data set, and forecast accuracy refers
to the percentage difference between a projection and the census-enumerated population for
the same year. In other words, projections are treated as if they were indeed forecasts of future
population.

Data and Projection Techniques

The data used in this study were the final population counts from each decennial census
from 1900 to 1980, for each of the 50 states in the United States (U.S. Bureau of the Census,
1983). These data refer to total population only; no analysis was performed on the age, sex,
or race distribution of the population. The following terminology, based in part on Cohen
(1986), is used to describe population projections:

1. Base year—the year of the earliest observed population size used to make a
projection.

2. Launch year—the year of the latest observed population size used to make a
projection.

3. Target year—the year for which population size is projected.

4. Base period—the interval between the base year and the launch year.

5. Projection horizon—the interval between the launch year and the target year.

For example, if data from 1900 and 1910 were used to project population size in 1920, then
1900 would be the base year; 1910, the launch year; 1920, the target year; 1900-1910, the
base period; and 1910-1920, the projection horizon.

Four primary projection techniques were used. First was linear extrapolation (Line),
which assumes that a population will increase (decrease) by the same number of persons in
each future year as the average annual increase (decrease) during the base period:

P, = P, + xly(P, = P), (1)

where P, = state population projection for target year, P, = state population in launch year,
P, = state population in base year, x = number of years in projection horizon, and y =
number of years in base period.

The second technique was exponential extrapolation (Expo), which assumes that a
population will grow (decline) at the same annual rate in each future year as during the base
period:

P, = Py exp(rx), 2)

where 7 = average annual growth rate during base period.

In the third and fourth techniques, state population data were expressed as shares of
national population data. Under the shift-share technique (Shift), state shares of national
population were calculated for the base year and launch year and were extrapolated into the
future by assuming that the average annual absolute change in each state’s share of national
population observed during the base period would continue throughout the projection
horizon. The extrapolated state shares were then applied to an independent projection of
national population to provide state population projections:

P, = P;, [P/P;; + xly (P/Py — Py/Pj)], (3)

where P;, = national population projection for target year, P; = national population in
launch year, and P, = national population in base year.
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Under the share-of-growth technique (Share), state shares of national population growth
during the base period were calculated. Projections were made by assuming that these shares
would be the same throughout the projection horizon as they were during the base period:

P, = P, + [(P; — Py)/(Py — Py)] (P;; — Py). 4)

The Shift and Share techniques each require an independent projection of the national
population. Since no widely accepted set of national projections was produced in the early
part of this century, a new set had to be constructed. This was done by applying the Line and
Expo techniques to the United States population and using an average of the results as a
national projection.

It should be noted that the Shift and Share techniques have two sources of error: one
caused by errors in projecting state shares of the national population and the other caused by
errors in the national projections. The latter source of error is minor. An alternative set of
projections from Shift and Share was made using census enumerations of the national
population for the target years instead of projections. The results from this alternative set of
state projections differed only slightly from those reported in this article. National projections
rather than census data were used in this analysis because employing the Shift and Share
techniques for population projections requires the use of prolectlons rather than census
counts of the larger area population.

A fifth technique was evaluated as well. Projections from this technique (Ave) were
simply the averages of the projections produced by the four primary techniques.

Simple projection techniques have a long history, having been used by such notable
persons as Benjamin Franklin, Thomas Jefferson, and Abraham Lincoln (Dorn, 1950:315).
They are still frequently used for local population projections (Federal-State Cooperative
Program, 1984) but are no longer commonly used for projections of state and national
populations, having been replaced by more sophisticated cohort-component and economic-
demographic techniques. These more sophisticated techniques, however, were developed
and used for state-level projections only within the last several decades (e.g., U.S. Bureau of
the Census, 1957; U.S. Bureau of Economic Analysis, 1974). Projections from these
techniques are therefore not available for most decades of this century. Creating such
projections specifically for this study would have been prohibitively expensive or even
impossible, given the lack of relevant data. Consequently, it was necessary to base the present
analysis on the simple projection techniques described above.

The simplicity of these techniques does not negate their usefulness, however. A number
of studies have concluded that simple extrapolation techniques produce short- to medium-
term forecasts of total population that are at least as accurate as those produced by more
sophisticated techniques (e.g., Ascher, 1978; Greenberg, 1972; Kale et al., 1981; Murdock
et al., 1984; Siegel, 1953, 1972; Smith, 1984; White, 1954). Furthermore, the more
sophisticated techniques themselves are typically based on extrapolations of one type or
another (e.g., migration rates, birth rates, and survival rates for cohort-component projec-
tions; employment trends for economic-based projections). The functional forms of these
extrapolations are often similar to those of the simple techniques. If applied to the same base
periods, then, the projections from the more sophisticated techniques would most likely be
similar to those analyzed in this study (Smith, 1987).

The advantages of using simple projection techniques for the present analysis are that
they require very few base data, they can be applied at low cost, and they can be applied
retrospectively to produce a large number of consistent projections that are comparable over
time. We believe these simple techniques provide a useful vehicle for testing stability in the
distribution of population forecast errors over time.



464 Demography, Vol. 25, No. 3, August 1988

Analysis of Errors

Projections for each of the 50 states were made for 10- and 20-year horizons, using
10-year base periods and the five techniques described previously. Projections were made
from every base period since 1900, yielding seven sets of 10-year projections and six sets of
20-year projections. These projections were then compared with decennial census counts for
each target year. The resulting differences are called forecast errors, although they might
have been caused partly by errors in census enumeration as well as by errors in the forecasts
themselves. Throughout this article the term “error” refers to percentage error rather than to
absolute numerical error.

General Characteristics

Two measures were used to provide a general description of forecast error characteris-
tics. Mean absolute percentage error (MAPE) is the average percentage error when the
direction of error is ignored. This provides a measure of forecast accuracy. Mean algebraic
percentage error (MALPE) is the average percentage error when the direction of error is
accounted for. This provides a measure of bias: a positive error indicates a tendency for
projections to be too high and a negative error indicates a tendency for projections to be too
low.

To provide an overall picture of forecast error characteristics, errors were aggregated
from all of the sets of 10- and 20-year projections, providing a pooled sample of errors from
350 10-year projections and 300 20-year projections. Tables 1 and 2 summarize these errors

Table 1. MAPE and MALPE by Technique, Population Size, and Length of Projection Horizon

. MAPE, projection horizon MALPE, projection horizon
Population
Technique size* ' 10 years 20 years 10 years 20 years
Line <1 million 9.5 17.3 -1.2 -3.3
1-3 million 6.0 11.9 -14 -2.3
>3 million 5.5 9.1 -0.2 -14
Total 7.0 13.0 -1.0 -2.4
Expo <1 million 11.6 26.8 3.7 12.2
1-3 million 7.4 16.3 1.2 5.9
>3 million 6.6 13.5 23 6.3
Total 8.5 19.1 2.3 8.1
Shift <1 million 9.9 18.3 -0.2 -0.5
1-3 million 6.2 12.3 -0.7 -0.1
>3 million 5.8 9.8 0.7 1.2
Total 7.3 13.7 -0.1 0.1
Share <1 million 10.6 21.6 0.0 0.1
1-3 million 7.0 14.3 -1.3 -2.0
>3 million 6.0 11.1 0.7 1.1
Total 7.9 15.9 -0.2 -04
Ave <1 million 10.3 20.3 0.6 2.1
1-3 million 6.6 13.4 -0.6 0.4
>3 million 5.9 10.5 0.9 1.8
Total 7.6 15.0 0.2 1.4

* Population size in launch year.
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Table 2. MAPE and MALPE by Technique, Rate of Growth, and Length of Projection Horizon

MAPE, projection horizon MALPE, projection horizon
Rate of
Technique growth* 10 years 20 years 10 years 20 years
Line <10% 5.7 10.8 -3.0 -6.2
10-20% 5.6 104 -0.5 —-22
>20% 10.9 19.2 1.3 2.6
Total 7.0 13.0 -1.0 —-24
Expo <10% 5.6 10.6 —-2.7 -5.2
10-20% 5.9 114 1.1 24
>20% 16.4 411 115 345
Total 8.5 19.1 23 8.1
Shift <10% 5.7 10.9 —2.8 —5.4
10-20% 5.8 10.9 0.3 0.3
>20% 11.7 21.2 3.2 7.7
Total 7.3 13.7 -0.1 0.1
Share <10% 6.5 14.2 —4.7 -11.2
10-20% 5.6 10.6 0.1 -0.7
>20% 13.0 252 5.9 15.1
Total 7.9 15.9 -0.2 -04
Ave <10% 5.8 11.4 -3.3 -7.0
10-20% 5.7 10.8 0.2 -0.1
>20% 12.8 255 55 15.0
Total 7.6 15.0 0.2 14

* Rate of growth during base period.

for each technique, with states divided according to population size in the launch year (Table
1) and rate of population growth during the base period (Table 2).

A number of distinct patterns can be seen in these tables. Forecast accuracy (a) declined
as the length of the projection horizon increased, (b) increased as the size of the base
population increased, and (c) declined as the rate of population growth during the base
period increased. These patterns were found for all five techniques and for both 10- and
20-year projections. Similar patterns were found in many other studies (e.g., Irwin, 1977;
Isserman, 1977; Schmitt and Crosetti, 1951, 1953; Smith, 1987; Stoto, 1983; White, 1954).

There was no evidence of any overall bias in these projections. The total sample
MALPE was slightly negative for Line, slightly positive for Expo, and virtually zero for Shift
and Share. In no instance were total sample MALPE:s significantly different than zero. There
was no evidence of a consistent relationship between population size and bias (Table 1), but
there was strong evidence of one between growth rates and bias (Table 2). For every
technique in both the 10- and 20-year projections, MALPEs increased as the rate of growth
during the base period increased. Differences in MALPE:s by rate of growth were frequently
very large. A positive relationship between bias and population growth during the base period
was previously noted for projections of counties in the United States (Smith, 1987).

A number of studies have concluded that the choice of projection technique generally
has little impact on the overall forecast accuracy of short- to medium-term population
projections, once the base period and projection horizon have been fixed (e.g., Ascher, 1978;
Kale et al., 1981; Smith, 1984; White, 1954). This study supports that conclusion.
Differences in forecast accuracy among alternative techniques were found to be small in most
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instances. The overall MAPEs for the 10-year projections were between 7.0 percent and 8.5
percent for all five techniques, whereas the 20-year projections displayed a wider range of
13.0 percent to 19.1 percent. Expo had the largest errors, particularly for the 20-year
projections and for states with populations of less than 1 million or growth rates of greater
than 20 percent. Other than these results for Expo, however, the errors for the different
techniques were similar. Furthermore, the patterns relating forecast errors to size of place,
rate of growth, and length of projection horizon were much the same for all five techniques.

Stability Over Time

The pooled sample data summarized in Tables 1 and 2 provide an overall picture of the
error characteristics for state population projections during the 20th century. The results
regarding accuracy, bias, and the effects of population size, growth rate, and length of
projection horizon are consistent with the findings of many other studies. These results tell
us nothing, however, about trends in forecast accuracy and bias over time. What patterns can
be seen when each set of projections is viewed individually?

Table 3 shows MAPEs and MALPEs for 10-year projections for each technique and
target year from 1920 to 1980. Several conclusions can be drawn from this table. First, the
largest MAPEs were for the first set of projections (1920). This was true for all five
techniques, most notably for Expo.! Second, there were no persistent biases in these
projections. For each technique MALPEs were positive for about half of the target years and
negative for about half. Third, for target years after 1920, there were no apparent trends in
accuracy or bias. MAPEs and MALPE:s did not become systematically larger or smaller over
time but, rather, fluctuated up and down. Finally, after 1920 MAPEs and MALPEs did not
differ dramatically by target year or technique. On the contrary, they typically fell within a
fairly narrow range. Similar results regarding MAPEs and MALPEs were found in an
analysis of 20-year projections for target years 1930-1980 (not shown here).

Table 3. MAPE and MALPE for 10-Year Projections, by Technique and Target Year

Technique
Target
year Line Expo Shift Share Ave
MAPE
1920 8.4 15.6 9.5 11.0 10.9
1930 6.6 7.3 6.7 7.4 7.0
1940 6.5 8.6 71 7.8 7.5
1950 7.9 7.3 7.8 7.8 7.7
1960 6.9 5.6 6.6 6.7 6.4
1970 44 7.3 5.0 6.0 5.6
1980 8.4 7.9 8.3 8.5 8.2
MALPE
1920 5.2 14.1 71 7.9 8.6
1930 -1.4 1.2 -0.6 -0.8 -0.4
1940 35 5.9 44 3.8 44
1950 -6.8 -5.9 -6.6 -6.6 -6.5
1960 -5.2 -26 -4.5 —-47 —-4.2
1970 1.3 54 24 20 2.8

1980 -3.7 -1.7 -3.1 -3.3 -2.9




Stability in Distribution of Population Forecast Errors 467

A constant mean is a necessary but not a sufficient condition to establish the stability of
a distribution over time. Measures of the dispersion of errors around the mean must also be
considered. Table 4 shows the standard deviations for absolute and algebraic forecast errors
for each of the seven sets of 10-year projections. For all five techniques (especially Expo),
standard deviations were large for 1920 but considerably smaller thereafter. There were no
major differences among techniques regarding the size of standard deviations, nor was there
any apparent trend over time. In all instances, standard deviations were larger for algebraic
than absolute errors because algebraic errors account for both size and direction of error.

We are not primarily concerned in this study with differences in errors among
alternative projection techniques. Consequently, the analysis throughout the remainder of
the article will focus on projections coming solely from the Ave technique. An analysis of
errors from the other four techniques was also performed (not shown here), and the results
were similar to those reported here for Ave.

The stem-and-leaf plots (Tukey, 1977) in Figure | show the distributions of algebraic
forecast errors for the seven sets of 10-year projections for the Ave technique. For each target
year, the distribution is mound shaped and symmetric, except for occasional outliers (e.g.,
errors of 76 percent in 1920 and 40 percent in 1930). All seven distributions appear to be
roughly normal. In fact, formal tests of normality (Shapiro and Wilk, 1965) reveal that the
null hypothesis of a normal distribution cannot be rejected at a 5 percent level of significance
for any target years except the two earliest, 1920 and 1930. Stem-and-leaf plots for absolute
forecast errors were also generated. Not surprisingly, they revealed skewed (nonnormal)
distributions, truncated at zero. (The interested reader can use the data shown in Fig. 1 to
construct plots for absolute forecast errors by disregarding the signs of the errors and starting
the scale at zero.)

To evaluate the stability of error distributions over time, we must focus on both means
and variances. With 6 representing the parameter of interest (mean or variance), we test three
alternative hypotheses regarding stability:

Table 4. Standard Deviations for 10-Year Projections, by Technique and Target Year

Standard deviations

Target
year Line Expo Shift Share Ave
Absolute Percentage Errors
1920 10.7 23.4 1.9 14.8 156.1
1930 7.0 8.7 7.2 8.0 7.6
1940 5.0 7.5 5.3 5.9 5.8
1950 7.0 6.5 6.9 6.8 6.8
1960 6.3 5.0 6.0 55 5.5
1970 4.1 7.9 4.4 5.5 5.0
1980 55 5.8 5.5 5.8 5.5
Algebraic Percentage Errors
1920 12.6 24.4 13.5 16.7 16.6
1930 9.5 1.3 9.9 10.9 10.3
1940 7.5 9.8 7.8 9.1 8.5
1950 8.2 7.8 8.1 8.0 8.0
1960 7.8 7.1 7.7 7.2 7.3
1970 5.9 9.3 6.3 7.9 7.0

1980 9.4 9.7 9.5 9.9 9.5
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1920 1930 1940 1950
Stem | Leaf Stem | Leaf Stem | Leaf Stem | Leaf
4 | 9 (High = 76) 4 4 4
41 11 410 4 4
3(7 3 3 3
3 3 3 3
21 677 2 2 2
2 2|4 21013 2
1| 558 1 11788 1
171 1 | 003 1101111123 1
0 | 55555688999 0 | 55566667 0 | 566778899 0 {579
0| 111222223444 0 | 22223334 0 | 001223334444 0 | 1244
—0 | 0011222233 —0 | 000112233333444 -0 | 0111223 —0 | 01122222233333344
-0 | 6889 -0 | 55557777 -0 | 566778 -0 | 5666678889
-1] 2 -1 [ 02 -1 —1 | 0000112344
-1 -1 |78 -1 |34 -1 | 899
-2 -2 124 -2 -2 ]2
-2 -2 -2 -2 15
-3 -3 -3 -312
1960 1970 1980
Stem | Leaf Stem | Leaf Stem | Leaf
4 4 4
4 4 4
3 3 3
3 3 3
2 2|5 2
2 2 2
1 117 1155
1| 034 1 |1 00234 110124
0 0 | 556667899 0 | 57889
0 111122234 0 | 0111122222333333444 0 | 133344
-0 | 0122222333444 -0 | 011223344 —0 | 1122334444
-0 | 555555566777888889 -0 | 679 -0 | 566777777899
-1] 122 -11]0 -1 | 00001
-1] 69 : -115 -1 | 5577
-2| 33 -2 -21]0
-2 -2 -219
-3 -3 -3

Figure 1.—Stem-and-Leaf Plots for Algebraic Percentage Errors (Ave) for 10-Year Projections, by Target Year.
The numbers for the stem indicate the first digit for each forecast error, and the numbers for the leaf
indicate the second digit (c.g., an error of 10 percent is indicated by stem = 1 and leaf = 0).

Each plot shows 50 errors, 1 for each state.

L Hy: 01920 = 01930 = - - = = Oiog0,
2. Hzl 0[ = Ga,
3. H3: 6, = 6,_y0,
where t = 1920, 1930, . . ., 1980 and a = all target years between 1920 and 1980 (except

t) combined.

H, tests the hypothesis that means (variances) of forecast errors are identical for all seven
target years (1920-1980). This is the most stringent hypothesis. H, tests the hypothesis that
the mean (variance) of forecast errors for target year ¢ is identical to the mean (variance) for
the distribution of errors from all six other target years combined. Seven different tests were
conducted, one for each target year. H; tests the hypothesis that the mean (variance) of
forecast errors for target year ¢ is identical to the mean (variance) for the previous target year
(t — 10). Six different tests were conducted, one for each pair of consecutive target years.

Because of the nonnormal distributions of algebraic errors for 1920 and 1930 and
absolute errors for all target years, tests of means were conducted using well-known
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nonparametric alternatives to the traditional analysis of variance F test. The Kruskal-Wallis
H test was used to test equality of means for H;, and the two-sample Wilcoxon rank sum test
was used for H, and Hs. For testing the equality of variances, Conover, Johnson, and
Johnson (1981) showed that a variation of Levene’s (1960) approximate F test is one of the
most powerful and robust procedures. We chose this modified Levene test (in which the
modification involved replacing the sample mean with the sample median) to test for the
equality of variances.

The results of these tests are summarized in Table 5, which shows the p values
associated with each of the three hypotheses. p = 0.05 indicates that the hypothesis of equal
means (or variances) cannot be rejected at a 5 percent level of significance. Looking first at
absolute forecast errors, the top panel of Table 5 shows that we cannot reject the hypothesis
(H,) that the mean errors for all seven sets of projections were identical, but we must reject
the hypothesis that all seven variances were identical. On this most stringent test, then, the
hypothesis regarding stability of absolute forecast errors must be rejected for one of the two
parameters under consideration.

For H, and Hj the results are more favorable for the notion of stability over time in the
distribution of absolute forecast errors. The hypothesis (H,) that the mean (variance) for
target year t is identical to the mean (variance) for all other years combined must be rejected
for only one out of seven sets of projections (1980 for the mean and 1920 for the variance).
Even greater stability is found when testing Hj, that the mean-(variance) for one target year
is identical to the mean (variance) for the previous target year. This hypothesis must be
rejected for only one out of six target years for means (1980) and cannot be rejected for any
target years for variances.

With respect to algebraic forecast errors, the evidence regarding stability is much

Table 5. p Values for Tests of Stability of Means and Variances Over Time for 10-Year
Ave Projections

Absolute percentage error Algebraic percentage error
Hypothesis Means Variances Means Variances
H, 0.13 <0.01 <0.01 0.02
H,
1920 0.92 <0.01 <0.01 0.01
1930 0.42 0.56 0.81 0.55
1940 0.46 0.66 <0.01 0.51
1950 0.63 0.95 <0.01 0.20
1960 0.42 0.21 <0.01 0.03
1970 0.05 0.12 <0.01 0.03
1980 0.02 0.33 0.02 0.93
Hs
1930 0.63 0.05 <0.01 0.16
1940 0.29 0.89 <0.01 0.83
1950 0.90 0.71 <0.01 0.53
1960 0.35 0.25 0.25 0.41
1970 0.41 0.71 <0.01 0.94
1980 <0.01 0.55 <0.01 0.03

Note: H,: Means (variances) are identical for all seven target years. H,: Mean (variance) for target year tis identical to
mean (variance) from distribution for all other target years combined. H;: Mean (variance) for target year t is identical to
mean (variance) for target year t — 10. p = 0.05 indicates that the hypothesis cannot be rejected at a 5 percent level of
significance.
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weaker. For H; we must reject the hypotheses that both the means and variances from all
seven sets of projections were identical. For H, the hypothesis of equality of means must be
rejected for six of the seven comparisons and the hypothesis of equality of variances must be
rejected for three of the seven comparisons. For H; the hypothesis of equality of variances
must be rejected for only one of the six target years (1980), but the hypothesis of equality of
means must be rejected for five of the six target years (all except 1960).

We replicated these tests for states divided into size categories (<1 million, =1 million)
and growth-rate categories (<20 percent, =20 percent).2 The results were much the same.
Although means and variances were considerably different for small states than for large states
and for rapidly growing states than for slowly growing states, within each size or growth-rate
category, the hypothesis of equality of means and variances for absolute errors could not be
rejected in most instances. For algebraic errors, however, the hypothesis of equality of
variances had to be rejected in a number of instances and the hypothesis of equality of means
had to be rejected in almost all instances.

We also replicated the tests for the 20-year projections with a 20-year base period. (For
projections with a 20-year horizon, a 20-year base period provided somewhat greater
accuracy and stability than a 10-year base period.) Although the means and standard
deviations for 20-year projections were approximately twice as large as for 10-year projec-
tions, the results regarding stability over time for absolute and algebraic errors were virtually
the same as those reported in Table 5.

We conclude from these results that there was a high degree of stability over time for
both the means and variances of absolute forecast errors for state projections during the 20th
century. There was somewhat less stability for the variances of algebraic forecast errors and
no stability at all for mean algebraic forecast errors. Since the MALPE is a measure of bias,
this tells us that the study of past forecast errors cannot help us predict the overall tendency
for a current set of projections to be too high or too low.?> A number of other studies have
drawn similar conclusions (e.g., Kale et al., 1981; Smith, 1984; Stoto, 1983). The stability
for both the means and variances of absolute forecast errors, however, provides evidence that
the study of past forecast errors may help us predict the level of accuracy of current
population projections, even if we cannot predict their bias.

Empirical Confidence Limits

The second objective of this study is to evaluate the validity of using data on the
distribution of past forecast errors to create confidence intervals for population projections.
The results presented in the preceding section suggest that the critical assumption underlying
the construction and use of empirical confidence intervals—that the distribution of errors
remains stable over time—is reasonably well satisfied in this sample for absolute forecast
errors. How can these results be used to construct and test confidence intervals?

Williams and Goodman (1971) suggested a method for constructing “empirical
confidence limits” based on the distribution of past forecast errors. We have modified and
adopted this technique because it can accommodate any error distribution, including the
asymmetric and truncated distributions of absolute forecast errors found in this sample. The
Williams and Goodman approach also permits an assessment of the confidence limits; that
is, we can compare the actual number of errors falling inside the limits with the expected
number.

For each of the seven sets of 10-year projections, absolute forecast errors were ranked
and the 90th percentile error (i.e., the absolute percentage error that was larger than exactly
90 percent of all absolute percentage errors) was determined. The 90th percentile errors for
each target year are shown in the second column of Table 6. We followed three different
approaches in using these errors to construct 90 percent confidence limits:
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Table 6. Actual and Predicted 90th Percentile Errors for Ave Technique, by Target Year

Distribution of errors Distribution of errors Distribution of errors
from previous target from all other target from all other target
year years years (excl. 1920)
% of % of % of
actual actual actual
Actual Predicted errors Predicted errors Predicted errors
90th 90th less than 90th less than 90th less than
Target percentile percentile predicted percentile predicted percentile predicted
year error error error error error error error
1920 36.4 — — 15.1 82 — —
1930 17.8 36.4 98 16.6 88 15.0 88
1940 17.6 17.8 92 16.7 90 15.0 88
1950 18.8 17.6 88 16.6 88 15.0 88
1960 14.3 18.8 94 17.4 94 15.3 92
1970 13.2 14.3 92 17.7 98 16.6 96
1980 15.1 13.2 82 17.4 94 15.2 92

1. The 90th percentile error from target year t — 10 was used as a forecast of the 90th
percentile error in target year t.

2. The 90th percentile error from the distribution of errors from all other target years
was used as a forecast of the 90th percentile error in target year ¢.

3. The 90th percentile error from the distribution of errors from all other target years
(excluding 1920) was used as a forecast of the 90th percentile error in target year ¢.

The first two approaches were selected to correspond to null hypotheses H; and H,, as
described in the preceding section. The third approach was selected to eliminate the effects
of several unusually large outliers in the error distribution for 1920. If the distribution of
absolute forecast errors remains stable over time, 90th percentile errors based on past error
distributions (or in the case of the second and third approaches, error distributions both
preceding and following the target year) should provide accurate predictions of the 90th
percentile error for the target year. Since we expect 90 percent of the absolute forecast errors
to fall below this value, the predicted 90th percentile error for any target year may be thought
of as a one-sided (upper) confidence limit with an associated confidence coefficient of 0.90.

To assess the accuracy of these three approaches to the construction of empirical
confidence limits, we compared the predicted with the actual 90th percentile errors for each
target year from 1920 to 1980 and computed the proportion of absolute forecast errors that
fell within the predicted value. These results are shown in the last six columns of Table 6.
In general, the results are quite satisfactory, especially in light of the small sample size. In
most instances the proportion of errors falling within the predicted confidence limit was close
to 90 percent. Using data from all other target years generally provided a more accurate
confidence limit than using data solely from the previous target year, and excluding the first
set of projections (target year 1920) further improved accuracy. For this third approach,
between 88 percent and 92 percent of errors fell within the predicted 90 percent value for all
target years except 1970, when 96 percent were within the predicted value.*

These empirical confidence limits appear to be neither too wide nor too narrow. For
some target years more than 90 percent of the errors fell within the predicted value, and for
other years fewer than 90 percent fell within the predicted value. The target years with too
many errors within the predicted values essentially offset the years with too few. Summing
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over all target years, 91.0 percent of actual errors fell within the predicted value using the first
approach to confidence limits, 90.6 percent using the second approach, and 90.7 percent
using the third approach.

The same three approaches to empirical confidence limits were applied to 20-year
projections with a 20-year base period (not shown). Although the 90th percentile errors were
larger than for the 10-year projections, the relationships between actual and predicted errors
were similar to those shown in Table 6.

We also constructed empirical confidence limits for states grouped by population size
(<1 million, =1 million) and growth rate (<20 percent, =20 percent). The results for large
states (=1 million) and slowly growing states (<20 percent) were similar to the results shown
in Table 6: Actual 90th percentile errors corresponded very closely to the predicted ones. For
small states (<1 million) and rapidly growing states (=20 percent), however, predicted 90th
percentile errors differed considerably from actual 90th percentile errors. These less
satisfactory results can be attributed to the more volatile nature of population growth in small
and rapidly growing states and—perhaps more important—to the very small sample sizes for
these categories (between S and 19 states per decade).

Conclusions

Can confidence intervals really be made for population projections? Under the formal
definition of confidence intervals, the answer is no: Confidence intervals cannot be
constructed because the probability distribution of future forecast errors is unknown (and
unknowable) at the present time. It is possible, however, to look at forecasts made in the past
to see how accurate they were in predicting population change. If current projection
techniques are similar to those used in the past, and if the degree of uncertainty is about the
same in the future as it was in the past, we can assume that future forecast errors will be
drawn from the same distribution as past errors (Keyfitz, 1981:587). Data on the distribution
of past forecast errors can therefore be used to construct empirical confidence limits for
population projections.

The critical assumption underlying the construction and use of empirical confidence
limits is that the distribution of forecast errors remains stable over time. The present study
has shown that the distribution of absolute forecast errors for states remained relatively stable
over the decades of the 20th century (especially since 1920). This finding is powerful, given
the tremendous fluctuations in population growth caused by world wars, depressions, baby
booms, and countless other events during this century. It gives us reason to believe that just
as data on past population trends can frequently provide reasonably reliable short- to
medium-term population forecasts, so might data on past forecast errors be able to provide
useful predictions of the distribution of future forecast errors. Indeed, the empirical
confidence limits tested in this study were generally successful in predicting the range of
future errors.

This study has also shown that the distribution of algebraic forecast errors was not at all
stable over the course of the 20th century. Although standard deviations remained
moderately stable over time, mean algebraic errors varied dramatically and unpredictably
from one decade to the next. In this sample, then, data on the bias of past projections did
not provide a reliable basis for predicting the bias of current projections. The approach taken
in this study is not likely to be useful for predicting the overall tendency for a particular set
of population projections to be too high or too low.

There are many different ways to produce confidence intervals for population projec-
tions (e.g., Cohen, 1986; Land, 1986). Each approach has unique characteristics, and
within each approach, different projection techniques imply different confidence intervals as
well. Future research must therefore evaluate various approaches for constructing confidence
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intervals, focusing on the effects of using different projection techniques, base periods,
projection horizons, and so forth. The results of this study imply that such research will be
very useful. Even though we may never be able to forecast future populations with a high
degree of accuracy, we may be able to develop relatively accurate forecasts of the distribution
of errors surrounding our point forecasts. Indicating the potential range of errors surrounding
population forecasts may be the most useful service the producers of population projections
can provide to their users.

Notes

! The large errors for the 1920 projections were caused primarily by the large numbers of small
states and states with high growth rates. There were 13 states with populations of less than 500,000 in
1910 and 11 states that grew by more than 50 percent between 1900 and 1910.

2 It would also be interesting to replicate these tests for states divided by size of place and rate of
growth simultaneously. Smith (1987) reported some important interactions between these two
variables. Unfortunately, the sample size used in this study is too small to permit such an analysis.

3 This refers to bias for an entire set of projections. There is evidence that extrapolative projection
techniques have predictable biases for places with extreme growth rates during the base period (Smith,
1987).

+ We also looked at 50th, 75th, and 95th percentile errors. For 95th percentile errors, the results
were similar to those reported in Table 6. For 50th and 75th percentile errors, however, there were
larger differences between the actual and predicted numbers of errors falling below the predicted value
than shown in Table 6. We believe this is because errors are more tightly bunched around the 50th and
75th percentile errors than around the 90th and 95th percentile errors. Therefore relatively small
differences between the actual and predicted values of percentile errors can cause relatively large
differences in the number of errors falling below the predicted value.

References

Ascher, W. 1978. Forecasting: An Appraisal for Policy-Makers and Planners. Baltimore, Md.: Johns Hopkins
University Press.

Cohen, J. 1986. Population forecasts and confidence intervals for Sweden: A comparison of model-based and
empirical approaches. Demography 23:105-126.

Conover, W. J., M. E. Johnson, and M. M. Johnson. 1981. A comparative study of tests for homogeneity of
variances, with applications to the outer continental shelf bidding data. Technometrics 23:351-361.

Dorn, H. F. 1950. Pitfalls in population forccasts and projections. Journal of the American Statistical Association
45:311-334.

Federal-State Cooperative Program for Population Projections. 1984. State Survey on Population Projections.
Sacramento: California Dept. of Finance, Population Research Unit.

Greenberg, M. 1972. A test of combination of models for projecting the population of minor civil divisions.
Economic Geography 48:179-188.

Irwin, R. 1977. Guide for Local Area Population Projections, Technical Paper No. 39. Washington, D.C.: U.S.
Bureau of the Census.

Isserman, A. 1977. The accuracy of population projections for subcounty areas. Journal of the American Institute
of Planners 43:247-259.

Isserman, A., and P. Fisher. 1984. Population forecasting and local economic planning: The limits on community
control over uncertainty. Population Research and Policy Review 3(4):27-50.

Kale, B., P. Voss, C. Palit, and H. Krebs. 1981. On the Question of Errors in Population Projections. Paper
presented at the Annual Meeting of the Population Association of America, Washington, D.C.

Keyfitz, N. 1972. On future population. Journal of the American Statistical Association 67:347-363.

. 1981. The limits of population forecasting. Population and Development Review 7:579-593.

Land, K. C. 1986. Methods for national population forecasts: A rcview. Journal of the American Statistical
Association 81:888-901.

Lee, R. D. 1974. Forecasting births in post-transition populations: Stochastic recnewal with serially correlated
fertility. Journal of the American Statistical Association 69:607-617.

Levene, H. 1960. Robust tests for equality of variances. Pp. 278-292 in I. Olkin (ed.), Contributions to Probability
and Statistics. Palo Alto, Calif.: Stanford University Press.

Murdock, S. H., F. L. Leistritz, R. R. Hamm, S.-S. Hwang, and B. Parpia. 1984. An assessment of the accuracy
of a regional economic-demographic projection model. Demography 21:383-404.




474 Demography, Vol. 25, No. 3, August 1988

Saboia, J. 1974. Modeling and forecasting population by time series: The Swedish case. Demography 11:483-492.

Schmitt, R., and A. Crosetti. 1951. Accuracy of the ratio method for forecasting city population. Land Economics
27:346-348.

. 1953. Short-cut methods of forecasting city population. Journal of Marketing 17:417-424.

Shapiro, S. S., and M. B. Wilk. 1965. An analysis of variancc test for normality (complete samples). Biometrika
52:591-611.

Siegel, J. S. 1953. Forecasting the population of small areas. Land Economics 29:72-88.

. 1972. Development and accuracy of projections of population and houscholds in the United States.
Demography 9:51-68.

Smith, S. K. 1984. Population Projections: What Do We Really Know?, Monograph No. 1. Gainesville, Fla.:
University of Florida, Bureau of Economic and Business Research.

. 1987. Tests of forecast accuracy and bias for county population projections. Journal of the American
Statistical Association 82:991-1003.

Stoto, M. 1983. The accuracy of population projections. Journal of the American Statistical Association 78:13-20.

Tukey, J. W. 1977. Exploratory Data Analysis. Reading, Mass.: Addison-Wesley.

U.S. Bureau of the Census. 1957. Illustrative Projections of the Population, by State, 1960, 1965 and 1970,
Current Population Reports, Ser. P-25, No. 160. Washington, D.C.: U.S. Government Printing Office.

. 1983. Number of Inhabitants, 1980 Census of Population (PC80-1-A1). Washington, D.C.: U.S.
Government Printing Office.

U.S. Bureau of Economic Analysis. 1974. Area Economic Projections 1990. Washington, D.C.: U.S. Government
Printing Office.

Voss, P., C. Palit, B. Kale, and H. Krebs. 1981. Forecasting State Population Using ARIMA Time Series
Techniques. Madison: University of Wisconsin, Applied Population Laboratory.

White, H. R. 1954. Empirical study of the accuracy of sclected methods of projecting state population. Journal of
the American Statistical Association 49:480-498.

Williams, W. H., and M. L. Goodman. 1971. A simple method for the construction of empirical confidence limits
for economic forecasts. Journal of the American Statistical Association 66:752-754.






