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ABSTRACT 

Small area population forecasts are used for a wide variety of planning and budgeting purposes. 

Using 1970–2005 data for incorporated places and unincorporated areas in Florida, we evaluate 

the accuracy of forecasts made with several extrapolation techniques, averages, and composite 

methods, and assess the effects of differences in population size, growth rate, and length of 

forecast horizon on forecast errors. We further investigate the impact of adjusting forecasts to 

account for changes in special populations and annexations. The findings presented in this study 

will help practitioners make informed decisions when they construct and analyze small area 

population forecasts. 
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INTRODUCTION 

Small-area population forecasts play a critical role in many types of planning, budgeting, and 

policy decisions. They are used for a wide variety of purposes, such as planning for changes in 

public school enrollment (McKibben 1996), developing conservation strategies (Steinitz, Aris, 

Bassett, Flaxman, Goode, Maddock, Mouat, Peiser, and Shearer 2003), selecting locations for 

new fire stations (Tayman, Parrott, and Carnevale 1994), planning for future water consumption 

(Texas Water Development Board 1997), and evaluating the demand for additional hospital 

services (Thomas 1994). Furthermore, they are often mandated by state and local governments 

for the development of comprehensive plans. For example, Chapter 9J-5 of the Florida 

Administrative Code requires estimates and projections of permanent and seasonal residents and 

states that “the department will evaluate the application of the methodology utilized by a local 

government in preparing its own population estimates and projections and determine whether the 

particular methodology is professionally accepted” (Florida Administrative Code 2001: 9J-

5.005(2)(e)).  

What determines whether a particular technique is “professionally accepted”? For 

researchers, accuracy is generally the primary criterion used in evaluating forecasting techniques 

(Yokum and Armstrong 1995). Planners, however, must consider a variety of additional factors 

such as costs of production, timeliness, ease of application and explanation, provision of 

necessary detail, validity of assumptions, usefulness as an analytical tool, political acceptability, 

and internal and external consistency (Smith, Tayman, and Swanson 2001; Murdock, Hamm, 

Voss, Fannin, and Pecotte 1991). As Sawicki (1989, 53) put it, “Accuracy is not everything.” 

Further complicating the issue is that planners are often called upon to balance the merits 

of pure or objective forecasts against those of normative or advocacy forecasts (Isserman 2007; 
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Skaburskis and Teitz 2003; Wachs 1989). For advocacy purposes, forecasts need not be accurate 

in order to have their intended political effects (Wachs 2001). In some instances, in fact, greater 

accuracy may be counterproductive because less objective forecasts may help projects gain 

approval or funding (Flyvbjerg, Skamris Holm, and Buhl 2005). Planners may also need to 

consider the role of community participation (Hopkins and Zapata 2007) and the involvement of 

policy makers (Klosterman 2007) in the forecasting process. 

Planners thus face a variety of conflicting interests and objectives when constructing or 

evaluating population forecasts. Regardless of the circumstances, however, well-informed 

decisions require at least a basic assessment of the expected level of forecast accuracy. Planners 

must therefore be knowledgeable regarding typical error patterns and how those patterns vary 

from one forecasting technique to another and according to the characteristics of the geographic 

areas being forecasted. Although other considerations are important, accuracy cannot be ignored 

and often plays a major role in determining whether a particular forecasting technique is judged 

to be “professionally acceptable.” 

We have three main objectives in this paper. First is to provide a comprehensive analysis 

of population forecast errors for subcounty areas. Although many studies have evaluated forecast 

accuracy for large geographic areas such as nations, states, and counties, few have done so for 

subcounty areas. Analyses at the subcounty level are important because there are far more 

subcounty governments than state or county governments in the United States and a great deal of 

government and business planning is conducted at that level. Our focus is on Florida, a large 

state with subcounty areas covering a wide range of population size and growth categories. We 

believe an analysis of subcounty forecast errors in Florida will provide insights into small-area 

error patterns more generally. 
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Second is to examine the potential benefits of using a combination of forecasts rather 

than forecasts based on a single technique. Combinations often provide greater accuracy and less 

variability than individual forecasts because they incorporate more information and reduce the 

impact of outliers (Ahlburg 1995; Isserman 1977; Rayer 2008; Smith and Shahidullah 1995). 

The combinations we investigate include averages of individual forecasts and a “composite” 

method in which the choice of forecasting technique is based on the characteristics of an area. 

Third is to investigate whether accounting separately for special populations (e.g., prison 

inmates, residents in college dormitories) and annexations can reduce forecast errors. Special 

populations and annexations can confound the forecasting process, but to our knowledge no 

study has evaluated their impact on forecast errors. Although changes in special populations 

affect growth trends for states and counties, they are of greater concern at the subcounty level 

because they typically account for a much larger proportion of the total population. The same is 

true for annexations, which occur almost exclusively at the subcounty level. 

 

METHODS 

Following Smith, Tayman, and Swanson (2001), we use the following terminology to describe 

population forecasts: 1) Base Year refers to the year of the earliest population size used to make a 

forecast; 2) Launch Year refers to the year of the latest population size used to make a forecast; 3) 

Target Year refers to the year for which population size is forecasted; 4) Base Period refers to the 

interval between the base year and launch year; and 5) Forecast Horizon refers to the interval 

between the launch year and target year. For example, if data from 1970 and 1980 were used to 

forecast population in 1990, then 1970 would be the base year, 1980 would be the launch year, 
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1990 would be the target year, 1970–1980 would be the base period, and 1980–1990 would be the 

forecast horizon.  

 The population data used in this study are based on census counts for 1970, 1980, 1990, 

and 2000, mid-decade estimates for 1975, 1985, and 1995, and postcensal estimates for 2005 for 

subcounty areas in Florida. The subcounty areas cover the entire territory of each county and 

consist of incorporated places and unincorporated areas. The former include cities, towns, and 

villages; the latter make up the remainder of each county. Only places that have been 

incorporated throughout the entire study period are included in the analysis, resulting in a sample 

of 383 incorporated places. Places that incorporated after 1970 were assigned to the 

unincorporated area of their respective counties. There are 66 unincorporated areas in the 

analysis, one for each county in Florida except Duval County, whose entire territory is 

incorporated. 

We produced the mid-decade estimates using residential electric customer data, decennial 

census counts, and interpolated population/customer ratios. Estimates for 2005 were produced by 

the Bureau of Economic and Business Research (BEBR) at the University of Florida (Bureau of 

Economic and Business Research 2006). Although estimates are generally less accurate than 

census counts, using a mixture of estimates and census counts when constructing and evaluating 

forecasts reflects actual forecasting practice and expands the number of forecast horizons that 

can be examined in the present study. In an analysis of alternative data sets, we found that 

forecast errors based on data that included both census counts and mid-decade estimates were 

very similar to errors based solely on census counts (data not shown).  

We constructed forecasts with 10- and 20-year horizons for launch years 1980, 1985, 

1990, and 1995. For each launch year and horizon, we applied six techniques: linear, 
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exponential, share-of-growth, shift-share, constant-share, and constant-size. The first four are 

trend extrapolations while the latter two hold one data point constant: share of population and 

population size, respectively. A mathematical description of these techniques is shown in the 

appendix. 

Extrapolation techniques such as these are commonly used for small-area population 

forecasts because they have small data requirements, can incorporate recent data, and are easier 

to apply than more complex cohort-component and structural models. Although simple in design, 

these techniques do not sacrifice accuracy for simplicity: Numerous studies have found 

extrapolation techniques to provide forecasts of total population that are at least as accurate as 

those derived from more complex models (see e.g. Ascher 1978; Chi 2009; Isserman 1977; Long 

1995; Morgenroth 2002; Pflaumer 1992; Rayer 2008; Smith and Sincich 1992; Smith and 

Tayman 2003; Stoto 1983). Similar results have been found in other fields as well (Goldstein and 

Gigerenzer 2009; Mahmoud 1984; Makridakis 1986; Makridakis and Hibon 1979, 2000).  

We examine forecast accuracy in two ways, one reflecting precision and the other bias. 

Precision refers to the difference between forecasts and subsequent census counts or population 

estimates, ignoring the direction of errors. Bias refers to the tendency for forecasts to be too high 

or too low by accounting for the direction of errors.  

We use the mean absolute percent error (MAPE) as our measure of precision. It is 

calculated as follows: 

 MAPE = Σ |PEt| / n, PEt = [(Ft – At) / At] * 100 

where PE represents the percent error, t the target year, F the population forecast, A the actual 

population, and n the number of areas. Forecasts that are perfectly precise result in a MAPE of 
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zero. The MAPE has no upper limit – the larger the MAPE, the lower the precision of the 

forecasts.  

We use the mean algebraic percent error (MALPE) as our measure of bias. It can be 

calculated analogously to the MAPE, using algebraic rather than absolute percent errors: 

 MALPE = Σ PEt / n  

Negative values of the MALPE indicate a tendency for forecasts to be too low, whereas positive 

values indicate a tendency to be too high.  

 Being arithmetic means, the MAPE and MALPE are susceptible to outliers, but both 

provide useful summary measures that are commonly used for evaluation purposes (Isserman 

1977; Rayer 2007; Smith 1987; Tayman, Schafer, and Carter 1998). For some purposes, of 

course, planners will be more concerned about absolute numerical errors than percent errors 

(e.g., when using population forecasts to determine whether to build a new school). For 

evaluating forecast accuracy and comparing places with different characteristics, however, we 

believe percent errors provide the most useful summary measures. 

 

BASIC RESULTS  

Overall Accuracy 

A fundamental part of every forecasting project is deciding which base data to include. Previous 

studies have found that 10 years of base data are generally necessary and are often sufficient to 

achieve the greatest possible precision for short- to medium-range population forecasts, though 

some extrapolation techniques – in particular, the exponential method – sometimes benefit from 

longer base periods (Beaumont and Isserman 1987; Smith and Sincich 1990; Rayer 2008). In this 

study, we evaluated forecasts with base periods ranging in five-year intervals from five to 20 
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years and found that increasing the length of the base period from five to 10 years generally 

improved precision but that further increases had little additional impact (data not shown). 

Accordingly, we report results only for forecasts with 10-year base periods. 

Table 1 shows MAPEs and MALPEs for 10- and 20-year horizons for each forecasting 

technique. This table shows average errors for forecasts of all target years within each forecast 

horizon (four sets of forecasts for 10-year horizons and two sets for 20-year horizons). For every 

technique, precision declines with increasing horizon length. This is not surprising, of course, 

and is a well established finding in the population forecasting literature (Keyfitz 1981; Smith and 

Sincich 1992; Stoto 1983). Of the six techniques, linear provides the most precise forecasts for 

both horizons, followed by the constant-size and share-of-growth techniques. The exponential 

technique produces the largest errors, especially for longer horizons. Although this technique can 

be an appropriate choice in some instances, it must be applied judiciously because it often 

produces unreasonable forecasts. We address the particular strengths and weaknesses of 

individual techniques later in the paper.  

(Table 1 about here) 

 Table 1b shows the results for MALPEs. Both the linear and shift-share techniques have 

a slight downward bias for 10-year horizons and a slight upward bias for 20-year horizons. The 

exponential and constant-share techniques have a substantial upward bias for both horizons and 

the constant-size technique has a substantial downward bias for both. In contrast to precision, 

previous research has found no consistent relationship between bias and length of forecast 

horizon (Smith and Sincich 1991). Although the data in Table 1b show a positive relationship 

between bias and length of horizon for most techniques, we believe this result is spurious 
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because an examination of MALPEs for individual target years found them to vary significantly 

within each horizon (data not shown).  

 It is likely that forecast accuracy varies systematically with the characteristics of the areas 

being analyzed. We turn next to two characteristics that have often been considered: population 

size and growth rate. The effects of other characteristics could also be investigated. In particular, 

the spatial pattern of forecast errors is a topic deserving further analysis. 

 

Accuracy by Population Size 

Previous research has found population size to affect the precision but not the bias of population 

forecasts (e.g., Rayer 2008; Smith and Shahidullah 1995; Smith and Sincich 1988; Tayman, 

Schafer, and Carter 1998). Forecasts generally become more precise as population size increases; 

consequently, forecasts for the nation tend to be more precise than forecasts for states, forecasts 

for states more precise than forecasts for counties, and forecasts for counties more precise than 

forecasts for subcounty areas. The largest improvements in precision typically occur in the 

smallest size categories; that is, errors generally become smaller as population size increases, but 

at a declining rate. 

 Figure 1a shows MAPEs by population size in the launch year for the six forecasting 

techniques. To save space, we present results only for forecasts with a 10-year horizon; the 

patterns were similar, though more accentuated, for forecasts with a 20-year horizon. For four of 

the six techniques, the forecasts become steadily more precise as population size increases. The 

largest improvements occur in the smallest size categories. MAPEs are very large for the 

smallest subcounty areas, but decline considerably as population size increases to about 5,000; 

beyond that point, further increases in size lead to relatively small additional improvements in 
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precision. For the exponential and constant-size techniques, MAPEs have a u-shaped relationship 

with population size. This apparent anomaly can be explained by the confounding influence of 

the population growth rate. As discussed in the following section, high growth rates are generally 

associated with relatively large MAPEs, and subcounty areas in the two largest size categories 

generally experienced higher growth rates than those in the smaller size categories (data not 

shown).  

(Figure 1 about here) 

Figure 1b shows conflicting results regarding the relationship between population size 

and bias. MALPEs sometimes decline as population size increases, sometimes increase, 

sometimes display a u-shaped relationship, and sometimes follow no clear pattern. Similar 

results have been reported in several previous studies (Murdock, Leistritz, Hamm, Hwang, and 

Parpia 1984; Smith and Sincich 1988; Tayman, Schafer, and Carter 1998). We believe these 

inconsistent results are caused both by the lack of a strong relationship between bias and 

population size and by the confounding influence of growth rates.  

 

Accuracy by Growth Rate 

Previous research has found population growth rates to have a consistent impact on both 

precision and bias. In general, forecasts tend to be most precise for areas with slow but positive 

growth rates during the base period and least precise for areas experiencing large positive or 

negative growth rates (e.g., Keyfitz 1981; Murdock, Leistritz, Hamm, Hwang, and Parpia 1984; 

Smith and Sincich 1992; Stoto 1983; White 1954). In addition, forecasts tend to be too high in 

areas that grew rapidly during the base period and too low in areas that declined or grew very 

slowly (e.g., Isserman 1977; Rayer 2008; Smith 1987; Smith and Sincich 1988; Tayman 1996).  



 10

 Figure 2a confirms the well-known u-shaped relationship between growth rates and 

precision. For the four trend extrapolation techniques, MAPEs are highest for areas that either 

grew or declined rapidly during the base period and lowest for areas with slow to moderate 

growth rates. The two constant techniques display similar patterns, but they are not as 

pronounced. Error levels themselves differ substantially from one technique to another. For areas 

with declining populations, the constant-size and exponential techniques provide the most 

precise forecasts and shift-share the least precise, on average. For areas that grew particularly 

rapidly, the linear technique has the smallest errors and the exponential technique the largest. We 

discuss a technique that builds on these findings later in the paper. 

(Figure 2 about here) 

 Figure 2b confirms previous results regarding bias: for the four trend extrapolation 

techniques, forecasts tend to be too low in areas that declined during the base period and too high 

in areas that grew rapidly. In every instance MALPEs follow a stepwise pattern, increasing 

monotonically with increases in the rate of population growth. The two constant techniques 

follow a different pattern: The constant-share technique exhibits a positive bias that declines as 

the growth rate increases, whereas the constant-size technique exhibits a negative bias that 

becomes greater as the growth rate increases.  

 

Accuracy by Population Size and Growth Rate 

The preceding discussion touched on the potential interrelationship between population size and 

the growth rate. To disentangle the effects of these two variables, we evaluate forecast errors for 

combined size and growth-rate categories. We present the results in Figures 3a and 3b. For ease 
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of illustration, we divide population size into two categories (< 2,000, ≥ 2,000) and growth rate 

into three categories (< 0%, 0 to 50%, > 50%).  

(Figure 3 about here) 

 For all six techniques, precision increases with increasing population size within each 

growth-rate category (see Figure 3a). These results are consistent with those reported previously 

and indicate that errors tend to be smaller for large places than small places even when 

differences in growth rates are accounted for. 

 For the four trend extrapolation techniques, errors are largest for places with either 

declining or rapidly growing populations (especially the latter) and smallest for places with 

moderate growth rates. These results are found for places in both size categories and confirm the 

u-shaped relationship reported previously. The patterns are not as clear for the constant-share and 

constant-size techniques. 

 Of the six techniques, the constant-size technique performs particularly well for places 

with declining or slowly growing populations, regardless of population size; the exponential and 

linear techniques also perform well for these places. For places with growth rates greater than 

50% and population sizes below 2,000, the constant-size technique is again the most precise, but 

for larger areas within this growth-rate category the linear technique produces the smallest errors. 

The shift-share technique performs particularly poorly for small places with declining 

populations and the exponential technique performs particularly poorly for rapidly growing 

places in both population size categories.  

Figure 3b shows the results for bias. For the four trend extrapolation techniques, there is a 

positive relationship between MALPEs and population growth for places in both size categories: 

errors are negative for places losing population and positive for places with growing populations, 
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especially if those growth rates are very high. Again, the results are consistent with those shown 

previously. The constant-size and constant-share techniques display different patterns than the 

other four techniques, but those patterns are also consistent with those shown previously.  

Within growth-rate categories, population size impacts bias only indirectly. Forecasts 

made with the four extrapolation techniques for areas with declining populations tend to be too 

low, and that bias becomes less negative with increasing population size; forecasts for areas with 

growing populations tend to be too high, and that bias becomes less positive with increasing 

population size. Consequently, in contrast to the growth rate, population size does not influence 

the direction of bias; rather, the greater precision associated with larger population sizes merely 

reduces the level of bias, whether it is positive or negative. The absence of a relationship 

between population size and direction of error is consistent with the results shown above and 

with the findings of several previous studies. Results for the two constant techniques are not as 

consistent in this regard. 

The constant-size technique again performs particularly well for places with declining or 

slowly growing populations, regardless of population size. The linear technique performs 

particularly well for large places, especially those with positive growth rates. The shift-share 

technique performs particularly poorly for places losing population (especially small places) and 

the exponential technique performs particularly poorly for places with high growth rates 

(especially small places).  

 

COMBINING FORECASTS 

Combinations of forecasts can potentially provide greater accuracy and less variability than 

individual forecasts because they incorporate more information and reduce the impact of outliers. 
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In population forecasting, these “combined” forecasts have often been found to be more accurate 

than most – sometimes all – of the individual forecasts used in their construction (Ahlburg 1995; 

Isserman 1977; Rayer 2008; Smith and Shahidullah 1995). Similar results have been found in 

other fields as well (e.g., Armstrong 2001; Clemen 1989; Hendry and Clements 2004; 

Makridakis, Wheelwright, and Hyndman 1998; Webby and O’Connor 1996). Overall averages or 

trimmed averages have been the most common techniques used in combining forecasts, but other 

approaches can also be applied.  

 Table 2 is structured similarly to Table 1, but adds results for two averages and one 

composite technique. The overall average was calculated as the mean of the forecasts from the 

six individual techniques; the trimmed average was calculated as the mean of those forecasts 

after the highest and lowest were excluded. For 10-year horizons, the overall average provides 

competitive results, but for longer horizons it becomes affected by the large errors associated 

with the exponential technique. This suggests that it may not be advisable to rely on an overall 

average because outliers associated with a single technique can greatly affect the results. The 

trimmed average fares better than the overall average, but is slightly less precise and more biased 

than the linear technique.  

(Table 2 about here) 

The results summarized in Figures 1–3 show that some techniques perform better than 

others for areas with particular population size and/or growth-rate characteristics. This 

information can be used to develop composite forecasts based on specific combinations of 

individual techniques (e.g., Isserman 1977). We calculated a variety of composites based on the 

performance of individual techniques by population size and growth rate and selected the one 

that worked best. In accordance with the results shown in Figures 3a and 3b, the composite in 
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Table 2 selects the constant-size technique for areas that experienced population declines over 

the base period and for areas that grew but had a launch year population below 2,000, and the 

linear technique for areas that grew and had a launch year population of 2,000 and above. 

Table 2a shows that forecasts made with the composite technique are more precise than 

those made with any of the individual or average techniques for both forecast horizons. With 

respect to bias (Table 2b), the composite shows less bias than the other techniques in most 

instances, although linear and shift-share also perform well. The low overall bias of the linear 

and shift-share techniques is somewhat deceiving, however, because as Figure 3b showed, all 

four extrapolation techniques exhibit a negative bias for areas with declining populations and a 

positive bias for areas experiencing high rates of growth, which to some extent cancel each other 

out in the aggregate. Consequently, while the overall bias of forecasts made with the linear and 

shift-share techniques is low, the bias for individual areas with high positive or negative growth 

rates can be quite high. This demonstrates the importance of examining forecast accuracy by 

population size and growth-rate characteristics, and strengthens the case for using averaging and 

composite techniques. 

The composite approach clearly excels for the subcounty population forecasts analyzed in 

this study. Would similar results be found for forecasts from other time periods and geographic 

areas? To examine this issue, we used decennial census data from 1900 to 2000 and the 

techniques described above to develop forecasts for a large sample of counties in the continental 

United States. We found that the relative performance of the individual techniques by population 

size and growth rate was about the same for the national sample of county forecasts as for 

subcounty forecasts in Florida. Next to the linear technique, the composite and the trimmed 

average provided the most precise and least biased forecasts throughout, though the differences 
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among the various techniques were smaller at the county than the subcounty level (data not 

shown). Several previous studies have reported similar results (Isserman 1977; Rayer 2008; 

Smith and Shahidullah 1995).  

Given this evidence, we believe combinations of forecasts – especially trimmed averages 

and composite techniques – will generally produce more accurate small-area forecasts than can 

be obtained using individual techniques by themselves. Perhaps more important, combinations of 

techniques are less likely to produce large forecast errors for specific places than individual 

techniques because – at the time a forecast is made – it is not known which individual technique 

will produce the most accurate forecast for any particular place. Future research may uncover 

new and better techniques for combining forecasts than those presented here. 

 

EXTENDING THE ANALYSIS 

The analysis thus far has focused on the effects of differences in population size and growth rate 

on forecast accuracy and the potential benefits of combining forecasts. We turn now to two 

additional factors of particular relevance to small areas: special populations and annexations. To 

our knowledge, the effects of these two factors on population forecast accuracy have not been 

previously studied. 

 

Accounting for Special Populations 

A special population can be defined as “a group of persons that is found in a locality usually by 

reason of an administrative decision or legislative fiat” (Pittenger 1976, 205). These include 

groups such as college students, inmates of correctional facilities, and residents of military 

barracks and nursing homes. Special populations can present a challenge to population 
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forecasters because they often have unique demographic characteristics and may follow different 

growth trajectories than the rest of the population. For example, college students are heavily 

concentrated in the 18–24 age group and maintain the same age profile over time, and the 

number of prison inmates in a particular locality can increase or decline regardless of overall 

population growth trends. If special populations are not explicitly accounted for in the 

forecasting process, they may lead to unrealistic forecasts of population change.  

 In general, adjustments for special populations are needed only when these groups 

comprise a substantial proportion of the total population and when their growth patterns differ 

markedly from those of the rest of the population. Unfortunately, there are no general guidelines 

that define how ‘different’ and ‘substantial’ a special population must be to cause problems in 

population forecasting, and it is up to the analyst to make that assessment (Smith, Tayman, and 

Swanson 2001).  

A common method for adjusting for special populations is to subtract them from the 

base-period data, make a forecast of the remaining population, and add back an independent 

forecast of the special population in the target year (Smith, Tayman, and Swanson 2001). We use 

this method to investigate whether accounting separately for special populations improves 

forecast accuracy. The special populations we consider are inmates and patients in institutions 

operated by the federal government, the Florida Department of Corrections, and the Florida 

Department of Children and Family Services.  

We follow two different approaches when adding back a forecast of the special 

population in the target year: 1) We hold the special population constant at its launch year value 

(SP1), and 2) We use the actual value of the special population in the target year as the forecast 

value (SP2). The former reflects the naïve albeit potentially useful assumption that the special 
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population will not change, whereas the latter reflects a best-case scenario showing the 

improvement that would occur with a perfect forecast of the special population.  

 We made three forecasts for each area: one with no adjustment for special populations, 

one using the SP1 adjustment, and one using the SP2 adjustment. Table 3 summarizes the impact 

of these adjustments on forecast precision, showing the percent reduction (or increase) in 

MAPEs produced by each of the two adjustments for the linear technique. We focus on the linear 

technique because it was the most precise and least biased of the individual techniques analyzed 

in this study. To check whether the adjustments are sensitive to the technique chosen, we also 

calculated them using the composite technique, and found the results to be comparable (data not 

shown). We present the results for all target years for all 141 subcounty areas with special 

populations and for areas in which special populations exceeded 2.5% and 5% of the total 

population. We report results only for precision because we found that adjusting for special 

populations had no consistent effect on bias.  

(Table 3 about here) 

 As shown in Table 3, holding special populations constant over the forecast horizon 

(SP1) provides mixed results; in some instances this adjustment improves precision, but for the 

majority of target years it actually reduces precision. With perfect forecasts, however, adjusting 

for special populations produces substantial improvements (SP2). These improvements become 

consistently larger as special populations increase as a percentage of total population. 

 To illustrate the impact of these adjustments for several specific subcounty areas, Table 4 

focuses on three localities in Florida with different special population characteristics: the City of 

Chattahoochee, the Town of Malone, and the unincorporated area of Sumter County. The special 

population in Chattahoochee is made up of residents of the Florida State Hospital, while in 
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Malone and Sumter it consists of inmates in correctional facilities. In addition to total and special 

population counts, Table 4 shows three sets of algebraic percentage errors (ALPEs) – reflecting 

no adjustment for special populations, the SP1 adjustment, and the SP2 adjustment – for 10-year 

forecasts for target years 1990 and 2000 and 20-year forecasts for target year 2000. We report 

algebraic rather than absolute percent errors because for individual areas the two are identical in 

value, but the sign shows whether the forecast was too high or too low. 

(Table 4 about here) 

The results can be interpreted as follows: the closer to zero the error, the lower the bias 

and the higher the precision of the forecast. For example, for Chattahoochee, a 10-year forecast 

for target year 1990 using the linear technique with no adjustment for special populations was 

37.9% below the 1990 census count; with the SP1 adjustment it was 26.5% above; and with the 

SP2 adjustment it was 14.9% above. The forecast with the SP2 adjustment thus was the most 

precise and least biased of the three. Chattahoochee provides a good example of the 

unpredictable nature of forecasts for small areas with declining populations; forecast errors are 

large and change erratically over time, though both adjustments lead to improvements in 

accuracy for two of the three forecasts. The up-and-down pattern of Malone’s population from 

1970 to 1990 also results in large forecast errors, but knowledge of the new state prison opening 

in 1991 produces a significantly improved 10-year forecast for 2000 (SP2 adjustment). The 

Sumter unincorporated area houses both federal and state correctional facilities that expanded 

substantially between 1990 and 2000. Because the special population’s share of total county 

population is much lower than in either Chattahoochee or Malone, the impact of the institutional 

adjustment in the Sumter unincorporated area is more modest.  
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 To summarize, accounting for special populations can reduce forecast errors, but only if 

fairly accurate forecasts of special population are available. Although the evidence is not 

overwhelming, we believe that accounting for special populations is generally worth the 

additional effort – especially in areas where they account for a significant proportion of the total 

population – for the following reasons. First, in most instances there is reasonably accurate 

information regarding the eventual size of the special population, leading to results more similar 

to adjustment SP2 than adjustment SP1. Second, it is often politically advantageous to 

demonstrate that potentially relevant factors such as special populations have been accounted for 

in the forecasting process. Third, even when improvements in forecasts of total population are 

small, accounting for special populations may improve forecasts of population characteristics – 

e.g., the age, sex, and racial profile – which are often of concern as well.  

 

Accounting for Annexations 

Annexations can also pose a challenge when making small-area population forecasts because 

they introduce changes in geographic boundaries into the forecasting process. Although 

annexations are rare at the state and county level, in many states – including Florida – they are a 

common occurrence at the subcounty level and often have significant demographic consequences 

(Raymondo 1992). Some incorporated places annex adjoining areas on a regular basis, while 

others annex infrequently and irregularly. If the demographic effects of annexations during the 

base period are not accounted for explicitly, the analyst is essentially forecasting that similar 

effects will continue into the future. That may not be a reasonable assumption.  

In order to evaluate the effect of adjusting for annexations, we compare unadjusted 

forecasts with forecasts in which the population annexed during the base period is subtracted 
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from the total population in the launch year, a forecast of the non-annexed population is made 

using the techniques described previously, and a forecast of the annexed population in the target 

year is added. Once again, we present results for two different approaches to making 

adjustments. Under the first, we assume that no further annexations occur (A1); under the 

second, we add the population effects of annexations that actually occurred during the forecast 

horizon (A2). The first approach reflects a naïve but perhaps reasonable assumption and the 

second represents a best-case scenario. Again, we report the results for the linear technique and 

differentiate among all subcounty areas that experienced annexations and those with annexations 

greater than 2.5% and 5% of the total population.  

Evaluating the impact of annexations involves one complication not present in analyses 

of special populations. Annexations typically involve the expansion of a city or town’s 

boundaries to encompass a previously unincorporated area; consequently, cities and towns 

generally experience a population increase and unincorporated areas generally experience a 

population decline. We limit our analysis to incorporated places. Annexations often occur more 

or less continuously in unincorporated areas and we found that accounting for them separately 

provided no consistent benefits in terms of forecast accuracy (data not shown).  

Adjusting for annexations almost always improves precision for the 183 incorporated 

places in this subsample (see Table 5). The improvements become larger as the relative size of 

the annexation increases. In contrast to accounting for special populations, where only the 

scenario with perfect information (SP2) improves precision consistently, both annexation 

adjustment techniques lead to improvements in precision, though the effects are stronger for A2 

than for A1.  

(Table 5 about here) 
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We conclude our examination of annexation effects by focusing on four cities with 

varying frequencies and magnitudes of annexations: Gretna, Ocala, Plantation, and Seminole. 

Table 6 shows total population and annexation counts for 1970–2000 and the number of years 

these cities experienced at least one annexation. It also shows three sets of algebraic percentage 

errors – reflecting no adjustment for annexations, the A1 adjustment, and the A2 adjustment – 

for 10-year forecasts for target years 1990 and 2000 and 20-year forecasts for target year 2000. 

(Table 6 about here) 

For Gretna and Plantation, annexations are rare events occurring only in the 1970s. In 

Gretna, adjusting for annexations reduces forecast error for the 20-year forecast for 2000 but 

raises it for the 10-year forecast for 1990. The City of Plantation, in contrast, experienced 

consistent population growth, and factoring in its two substantial annexations leads to significant 

improvements in forecast accuracy. Ocala and Seminole represent cities that annex adjacent 

areas on a frequent basis. In Ocala, with one exception, the annexations account for only a small 

proportion of total population, and adjusting for the major annexation that occurred in 1976 

reduces forecast error significantly. Because the remaining annexations were small, the 

differences between adjustments A1 and A2 are quite modest. This is not the case for Seminole, 

which experienced six annexations exceeding 5% of its total population between 1970 and 2000. 

Here, the impact of adjusting for annexations is more mixed; the A1 adjustment increases 

forecast error for two of three forecasts while the A2 adjustment reduces forecast error for all 

three. 

 We conclude that adjusting for annexations can reduce forecast errors in many but not all 

circumstances. In general, annexations are less predictable than changes in special populations. 

Consequently, forecast results for annexations may more closely resemble adjustment A1 than 
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A2, whereas for special populations they may more closely resemble adjustment SP2 than SP1. 

Nonetheless, we believe it is generally advisable to adjust for annexations when making small-

area forecasts, at least for areas in which annexations occur infrequently and account for more 

than a trivial proportion of total population. These adjustments often significantly improve 

accuracy; when they do not, the outcome may have more to do with erratic and unpredictable 

population changes (e.g. Gretna in 1990) than with the annexation adjustment itself. When areas 

have a history of frequent annexations, however, such adjustments are not likely to lead to much 

improvement in forecast accuracy and may even make it worse. Thus, the analyst once again has 

to weigh the potential gains in accuracy and the political advantages of making adjustments 

against the costs of collecting additional data and amending the forecasting methodology.  

 

SUMMARY AND CONCLUSIONS 

Planners must consider a number of factors when constructing small-area population forecasts or 

using them for decision-making purposes: costs of production, timeliness, ease of application and 

explanation, provision of necessary detail, validity of assumptions, usefulness as an analytical 

tool, and the political acceptability of the forecasting process and the final results. The relative 

importance of these factors may vary considerably from one project to another. Regardless of the 

purposes for which they are used, however, the planner must be aware of the likely degree of 

accuracy of the forecasts.  

 What can we say about forecast accuracy that might help planners as they construct or 

evaluate small-area population forecasts? Based on this study and the results of previous 

research, we have drawn the following conclusions: 
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1) For trend extrapolation techniques such as those evaluated in this paper, 10 years of base data 

are generally necessary to achieve the greatest possible forecast accuracy for 10- and 20-year 

forecast horizons. In most instances, 10 years are also sufficient, as increases beyond 10 years 

generally do not lead to further improvements in accuracy.  

2) Precision declines steadily with the length of the forecast horizon – often in a nearly linear 

manner – but bias follows no clear pattern. Forecast errors for subcounty areas are sometimes 

very large, especially for areas with small populations and high rates of population change. The 

size of the errors reported in this paper may be disappointing to data users, but we believe it is a 

realistic indication of the degree of uncertainty inherent in small-area population forecasts. 

3) Precision is strongly affected by differences in population size, but bias is not. We found 

precision to be lower for subcounty areas with fewer than 1,000 residents than for areas in any 

other size category, often by a substantial amount. For most techniques, precision improved 

steadily as population size increased to about 5,000, but further increases led to only minor 

improvements.  

4) Population growth rates over the base period have a substantial impact on forecast accuracy. 

For most techniques, precision tends to be highest for areas with moderate growth rates and 

decreases as growth rates deviate in either direction from those moderate levels. In terms of bias, 

average errors for most techniques are large and negative for areas with the largest negative 

growth rates and increase as the growth rate increases, becoming large and positive for rapidly 

growing areas.  

5) Taking averages of forecasts from several techniques often improves forecast accuracy. We 

found that the trimmed average produced errors that were smaller than the errors for most of the 

individual techniques making up the average, and that the composite technique performed even 
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better. We believe the use of averaging and the development of new composite techniques hold a 

great deal of promise for future improvements in small-area forecasting. 

6) Accounting for changes in special populations can improve the average precision of 

population forecasts when there is good information on future changes in the special population. 

Fortunately, such information is often available, and we believe that adjusting for special 

populations is generally advisable, both for public relations purposes and because such 

adjustments may improve forecast accuracy for some places.  

7) Accounting for the effects of annexations also can improve the average precision of 

population forecasts. We found that these improvements became greater as annexations became 

larger relative to the size of the entire population. Better information on future annexations leads 

to better forecasts, but even accounting only for annexations that happened in the past seems to 

improve average forecast accuracy. We believe it is generally advisable to account for 

annexations when making subcounty population forecasts, at least for places in which 

annexations occur infrequently and constitute a significant proportion of total population. 

Furthermore, accounting for the characteristics of an annexed area can be helpful in determining 

its likely impact on future population change. For example, the annexation of an already built-out 

suburban neighborhood has different growth implications than the annexation of vacant land next 

to a developing growth corridor. 

Population forecasts cannot provide perfect predictions of future population change, of 

course. However, they can help planners identify relevant policy issues, define potential 

scenarios, and rule out unlikely outcomes. The techniques described in this paper offer useful 

tools for constructing small-area forecasts, and the empirical results will help planners and other 

analysts form realistic expectations regarding the likely precision and bias of those forecasts. 
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Given their low data requirements, ease of application, and track record for accuracy, we 

encourage planners to consider the use of simple extrapolation techniques. Although greater 

complexity may be needed for some applications (e.g., providing demographic detail, accounting 

for density constraints, or answering “what if” questions), simple techniques at least can offer 

helpful checks for evaluation purposes (Sawicki 1989). Chosen judiciously, we believe simple 

extrapolation techniques can often provide everything that is needed for constructing small-area 

population forecasts. 
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APPENDIX: FORECASTING TECHNIQUES 

Extrapolation techniques express future population values as a function of past population 

values: 

Linear: In the linear technique, the population increases (or declines) by the same number 

of persons in each future year as the average annual increase (or decline) observed during the 

base period: 

 Pt = Pl + (x / y) * (Pl – Pb), 

where Pt is the population in the target year, Pl is the population in the launch year, Pb is the 

population in the base year, x is the number of years in the forecast horizon, and y is the number 

of years in the base period.  

Exponential: In the exponential technique, the population grows (or declines) by the same 

rate in each future year as the average annual rate during the base period: 

 Pt = Pl e
rx, r = [ln (Pl / Pb)] / y, 

where r is the average annual growth rate, e is the base of the natural logarithm, and ln is the 

natural logarithm. 

Share-of-Growth: In the share-of-growth technique, a smaller area’s share of population 

growth of the larger area is the same throughout the forecast horizon as it was during the base 

period: 

 Pt = Pl + [(Pl – Pb) / (P
l – Pb)] * (Pt – Pl). 

Shift-Share: In the shift-share technique, the annual change in a smaller area’s share of 

population of the larger area is the same throughout the forecast horizon as it was during the base 

period: 

 Pt = Pt * [Pl / P
l + (x / y) * (Pl / P

l – Pb / P
b)]. 
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Both the share-of-growth and shift-share techniques are extrapolations using ratios. That 

is, they express population (or population change) of a smaller area as a proportion of population 

(or population change) of a larger area in which the smaller area is located. In our analysis of 

subcounty areas we use counties as the larger areas. In general, forecasts made with ratio 

techniques are not particularly sensitive to the choice of forecast used for the larger area (Rayer 

2007; Smith and Sincich 1988); we produce county population forecasts by taking an average of 

forecasts from the linear and exponential techniques. In the formulas for the share-of-growth and 

shift-share techniques shown above, as well as the constant-share technique shown below, 

subscripts denote subcounty-level values and superscripts denote county-level values.  

In addition to the four extrapolation techniques, we apply two constant techniques, which 

hold one data point – the share of population and population size, respectively – constant:  

Constant-Share: In the constant-share technique, a smaller area’s share of the larger 

area’s population is the same in the target year as it was in the launch year: 

 Pt = (Pl / P
l) * Pt. 

 Constant-Size: In the constant-size technique, the population in the target year is the same 

as it was in the launch year: 

 Pt = Pl. 
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Table 1a. MAPE by Horizon and Technique

Horizon Linear Exponential Share-of-Growth Shift-Share Constant-Share Constant-Size

10 17.1 30.0 19.0 24.1 23.0 19.1

20 30.5 231.5 40.2 56.1 51.8 31.0

Table 1b. MALPE by Horizon and Technique

Horizon Linear Exponential Share-of-Growth Shift-Share Constant-Share Constant-Size

10 -0.2 17.8 3.3 -2.2 13.2 -13.5

20 3.9 215.3 17.6 4.7 37.8 -23.5  
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Table 2a. MAPE by Horizon and Technique

Horizon Linear Exponential Share-of-Growth Shift-Share Constant-Share Constant-Size Average Trimmed Average Composite

10 17.1 30.0 19.0 24.1 23.0 19.1 17.4 17.1 14.4

20 30.5 231.5 40.2 56.1 51.8 31.0 61.6 34.1 24.1

Table 2b. MALPE by Horizon and Technique

Horizon Linear Exponential Share-of-Growth Shift-Share Constant-Share Constant-Size Average Trimmed Average Composite

10 -0.2 17.8 3.3 -2.2 13.2 -13.5 3.1 2.1 -2.0

20 3.9 215.3 17.6 4.7 37.8 -23.5 42.6 12.8 -3.3  
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Table 3. Percent Reduction in MAPEs, Accounting for Special Populations

     SP1      SP2

Year Horizon All > 2.5% > 5% All > 2.5% > 5%

1990 10 1.2 3.3 4.2 4.3 11.0 12.9

1995 10 (0.4) (0.9) (2.0) 10.1 23.0 27.2

2000 10 (1.7) (4.0) (5.8) 14.3 28.1 33.6

2005 10 (2.5) (6.8) (5.4) 2.9 7.4 11.7

2000 20 (0.2) (0.3) (0.3) 2.5 5.8 6.6

2005 20 1.7 4.3 4.2 8.8 20.9 23.5

All 10 (0.8) (2.1) (2.2) 7.9 17.4 21.3

All 20 0.8 2.0 2.0 5.6 13.4 15.1

Note:

This table is restricted to the subset of subcounty areas with special populations (N=141).

Columns titled "2.5%" and "5%" further restrict the analysis to subcounty areas where the

special population exceeds 2.5% (N=45) and 5% (N=36) of total population. 

Numbers in paratheses mean accounting for special populations increased error.

SP1 = Accounts for special populations by holding them constant at the launch year value.

SP2 = Accounts for special populations using the actual target year value.  
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Table 4. Impact of Adjusting for Special Populations: Case Studies

Variable Year Horizon Chattahoochee Malone Sumter UI

Population 1970 - 7,944 667 10,333

Population 1980 - 5,332 897 17,995

Population 1990 - 4,382 765 23,681

Population 2000 - 3,287 2,007 45,009

Special Population 1970 - 5,053 0 604

Special Population 1980 - 2,230 0 956

Special Population 1990 - 1,720 0 1,151

Special Population 2000 - 901 1,582 5,731

ALPE - No Adjustment 1990 10 -37.9 47.3 8.3

ALPE - SP1 Adjustment 1990 10 26.5 47.3 6.9

ALPE - SP2 Adjustment 1990 10 14.9 47.3 7.7

ALPE - No Adjustment 2000 10 4.4 -68.5 -34.8

ALPE - SP1 Adjustment 2000 10 19.9 -68.5 -35.2

ALPE - SP2 Adjustment 2000 10 -5.0 10.4 -25.0

ALPE - No Adjustment 2000 20 -96.7 -32.4 -26.0

ALPE - SP1 Adjustment 2000 20 75.1 -32.4 -27.5

ALPE - SP2 Adjustment 2000 20 34.6 46.4 -16.9  
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Table 5. Percent Reduction in MAPEs, Accounting for Annexations (Incorporated Places)

     A1      A2

Year Horizon All > 2.5% > 5% All > 2.5% > 5%

1990 10 2.1 2.9 3.5 3.6 5.0 5.7

1995 10 5.5 8.8 10.3 12.5 19.8 23.4

2000 10 0.3 0.6 0.3 1.2 1.7 1.6

2005 10 (1.5) (2.2) (1.9) 14.7 23.9 27.9

2000 20 5.1 7.3 9.0 5.9 8.5 10.7

2005 20 4.9 7.8 9.0 13.9 21.5 25.0

All 10 1.6 2.5 3.0 8.0 12.6 14.6

All 20 5.0 7.5 9.0 9.9 15.0 17.9

Note:

This table is restricted to the subset of incorporated places with annexations (N=183).

Columns titled "2.5%" and "5%" further restrict the analysis to incorporated places where

the annexed population exceeds 2.5% (N=100) and 5% (N=71) of total population. 

Numbers in paratheses mean accounting for annexations increased error.

A1 = Accounts for annexations that occurred between the base year and launch year.

A2 = Accounts for annexations that occurred between the base year and target year.  
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Table 6. Impact of Adjusting for Annexations: Case Studies

Variable Year/Period Horizon Gretna Ocala Plantation Seminole

Population 1970 - 883 22,583 23,523 2,121

Population 1980 - 1,557 37,170 48,653 4,586

Population 1990 - 1,981 42,045 66,814 9,251

Population 2000 - 1,709 45,943 82,934 10,890

Annexed Population 1970-1980 - 994 8,366 4,985 1,629

Annexed Population 1980-1990 - 0 941 0 3,022

Annexed Population 1990-2000 - 0 59 0 669

Number of Annexations 1970-2000 - 1 18 2 13

Number of Annexations > 2.5% 1970-2000 - 1 1 2 8

Number of Annexations > 5% 1970-2000 - 1 1 2 6

ALPE - No Adjustment 1990 10 12.6 23.1 10.4 -23.8

ALPE - A1 Adjustment 1990 10 -37.6 3.2 3.0 -41.4

ALPE - A2 Adjustment 1990 10 -37.6 5.4 3.0 -8.7

ALPE - No Adjustment 2000 10 40.7 2.1 2.5 27.8

ALPE - A1 Adjustment 2000 10 40.7 0.1 2.5 0.0

ALPE - A2 Adjustment 2000 10 40.7 0.2 2.5 6.2

ALPE - No Adjustment 2000 20 70.0 44.4 19.3 -12.6

ALPE - A1 Adjustment 2000 20 -46.3 8.0 7.2 -42.5

ALPE - A2 Adjustment 2000 20 -46.3 10.2 7.2 -8.6
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Figure 1a. MAPE by Population Size and Technique, 10 Year Horizon 
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Figure 1b. MALPE by Population Size and Technique, 10 Year Horizon 
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Figure 2a. MAPE by Growth Rate and Technique, 10 Year Horizon 
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Figure 2b. MALPE by Growth Rate and Technique, 10 Year Horizon 
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Figure 3a. MAPE by Population Size, Growth Rate, and Technique, 10 Year Horizon 
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Figure 3b. MALPE by Population Size, Growth Rate, and Technique, 10 Year Horizon 

 


