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ABSTRACT

This paper evaluates summary measures of populatamection accuracy and bias for a large
sample of counties and county equivalents in tmtigental United States over the period 1900—
2000. The analysis has two primary purposes. TBei§i to investigate the relationship between
accuracy and bias and the length of the projedtarizon and base period. The second is to
compare different trend extrapolation techniquet wespect to their forecasting performance,
both in the aggregate and by county size and groatds. The study finds that the length of the
base period has only a limited impact on accuracltaas; that errors grow about linearly with
increases in the projection horizon; that mostgutipn methods provide comparable results for
shorter projection horizons; that accuracy and ‘agag by population size and growth rate; and
that averages generally perform very well, equatingxceeding the performance of individual
technigues. The study confirms many of the findiafhe earlier projection evaluation

literature. By using a significantly enlarged datasoth with respect to space and time, its
conclusions strengthen those previous studies \ovide guidance regarding the production and

interpretation of small area population projections



INTRODUCTION

This study examines the accuracy and bias of teatréipolation population projection
technigues using one hundred years of county-lgat. Despite the ascendance of cohort-
component models, simple trend and ratio extrapolahethods remain popular, especially for
small areas, where their ease of use, small dgtareznents, and reliability often compare
favorably with more complex projection models. \éais modeling options exist, and while
some appear more appropriate than others wheredppliareas following specific patterns of
population change, the consensus seems to bedlpatrticular method consistently provides the
most accurate projection results. Many of the stithhat have evaluated projection errors did so
using a limited set of data both with regard tocgpand time (see e.g. Isserman 1977; Murdock
et al. 1984; Smith 1987; Smith and Sincich 199} ran et al. 1998). In particular, there exists
a paucity of sub-state population projection evidus that examine more than a few decades,
and which are nationally representative. This i®danate, because small area population
projections are used most frequently for actuahmpilag purposes. The present study attempts to
fill this gap by examining a wide range of popul&nd extrapolation projection techniques
using population data from every decennial censara fL900 to 2000 for all counties in the
continental United States for which comparable da¢savailable.

The analysis has two primary objectives. The fgdb investigate the relationship
between the length of the projection horizon ardithse period with regard to accuracy and
bias. Should the projection horizon and base pearatespond in length or is a short base
period, such as 10 years, generally sufficienthgysirich dataset that covers the entir8 20
century allows for an unprecedented number of ptimje horizon/base period combinations to

be analyzed. The second objective is to comparditfezent trend extrapolation techniques with



respect to their forecasting performance. In thst part of this section accuracy and bias are
analyzed for all counties. Following that, the gsa further differentiates between counties
representing different population size and growthugings.

In addition to these specific aims, a more genabpgdctive of this paper is to understand
how past trends of population change can infornpeptmns of an unknown future. Simple trend
extrapolation models are often not held in highardgamong population forecasters. Yet
numerous studies have found that more complex @plisticated techniques are generally no
more accurate (Long 1995; Murdock et al. 1984; Braitd Sincich 1992; Stoto 1983). While the
past may not always repeat itself, this study asdbat using historical data from a wide range of
years, a broad sample of geographical units, archaross-section of projection techniques
aids both producers and users of small area populptojections make better informed

decisions.

DATA AND TECHNIQUES

This paper uses population data for counties andtgaequivalents in the continental United
States — excluding Alaska and Hawaii — from theede@l U.S. censuses spanning the period
1900—2000. Throughout the 2@8entury many counties experienced changes tolibeindaries
that make a comparison of population figures frara oensus to the next problematic. In order
to preserve comparability, the analysis was limitethose counties that did not experience
significant boundary changes over the study pefieddetermine which of the changes were
significant, this study follows Forstall, who idéi@d the census date since which each “county
has had no significant territorial change, thatibpundary change large enough to have a

significant effect on the county’s population agh## preceding census” (1996.viii). This



resulted in a total number of 2,482 counties théihdt experience significant boundary changes
between 1900 and 2000, which amounts to 79.0% dfelcounties in Census 2000. To test
whether this restricted sample is representativbehation at large, the study compares results
to those obtained with a larger sample of 2,97&ties for the sub-period 1930-2000, which
represents 94.8% of all Census 2000 counties.

Covering census data for the entird 2@ntury, the analysis involves 125 projection
horizon/base period combinations spanning a raegeden 10 and 50 years. For each of these
projection horizon/base period combinations, a witd0 projection techniques were applied,
including seven primary techniques and three aesr.aghe primary techniques include linear
(LIN), modified linear (MLN), share-of-growth (SHR3hift-share (SFT), exponential (EXP),
constant-share (COS), and constant (CON). In adgithe study calculated three average
projections comprising all seven trend extrapofatechniques (AV7), excluding the highest and
the lowest projection (AV5), and excluding the thighest and two lowest projections (AV3).

The seven primary techniques were calculated &sifsl

LIN: In the linear extrapolation technique, it ssamed that the population will increase
(decrease) by the same number of persons in eaaie flecade as the average per decade
increase (decrease) observed during the base period

R=R+x/y(R-R)
Where Ris the population in the target yearj$the population in the launch yeag,i®the
population in the base year, x is the number ofs/gathe projection horizon, and y is the

number of years in the base period.



MLN: The modified linear extrapolation techniquéiedly equals the linear method but in
addition distributes the difference between the sifithe linear county projections and the
independent national projection proportionally mpplation size at the launch year:

P: = LIN + Ry / By (P: —ZLIN),
Where; represents the county ajidhe nation.

The modified linear method, as well as the shdrgrawth, shift-share, and constant-
share techniques, require an independent natieoggbion for the target year population.
Although population projections for the nation hdezn available for quite a long time (see e.qg.
Bonynge 1852; Pritchett 1891; Whelpton 1928), tleetists no satisfactory set that covers all the
target years used in this study. Instead, a newagf{roduced by applying the linear and
exponential trend extrapolation techniques to thieonal population. To flatten out the
discrepancies between the linear and exponentitdods, an average of the two techniques was

then calculated and used for the 4 ratio methods.

SHR: In the share-of-growth technique, it is assiithat the county’s share of population
growth will be the same over the projection horizant was during the base period:

Pe=Ri+[(Pi—Rv)/ (B — Byl (Pt—R)

SFT: In the shift-share technique, it is assumatitte average per decade change in each
county’s share of the national population obsehaing the base period will continue
throughout the projection horizon:

Pe=HR[Pi/Pi+Xx/y)(R/Pi—PRy/Rp)



EXP: In the exponential technique, it is assumed tthe population will grow (decline) by the
same rate in each future decade as it did, peddedaring the base period:
R=Re,  r=[nR/R)]/Y,

Where e is the base of the natural logarithm ansl the natural logarithm.

COS: In the constant-share technique, it is assuh@adhe county’s share of the national
population will be the same in the target yeai &ags in the launch year:

Pe=(Ri/ PJI) Pjt

CON: In the constant technique, it is assumedttietounty population in the target year is the
same as in the launch year:

R=HR

SUMMARY MEASURES OF PROJECTION ACCURACY AND BIAS

This analysis focuses on the accuracy of the ptiojgs and on their bias. Both require choosing
appropriate summary measures for their determinafiocording to the National Research
Council (1980), any summary measure of error shmedt the criteria of measurement validity,
reliability, ease of interpretation, clarity of gentation, and support of statistical evaluation.
With respect to accuracy, the most popular errasuee in population forecasting is the Mean
Absolute Percent Error or MAPE (see e.g. Ahlburg3t9sserman 1977; Smith 1987; Smith and
Sincich 1988, 1990, 1992). The MAPE is populardose it meets most of the above described
desired criteria, although it has been criticizadipularly with respect to its reliability and

validity (Coleman and Swanson 2004; Swanson &(l0; Tayman and Swanson 1999).



Alternative measures of error that are sometimed wsen evaluating population projections,
and which all address some of the presumed shomgsnassociated with the MAPE, include
the Median APE, MAPE-R, and M-Estimators (Armstramgl Collopy 1992; Swanson et al.
2000; Campbell 2002; Tayman and Swanson 1999). Mesdor bias are often computed
analogously, e.g. the Mean Algebraic Percent EM#&LPE) alongside the MAPE, and the
Median ALPE together with the Median APE.

In a companion study that used the same dataselfs for the MAPE, the Median APE,
and an M-Estimator — as well as their counterdartbias — provided generally comparable
results (Rayer 2005). Of the three measures, th@Eléonsistently reported the highest forecast
errors, on average exceeding the Median APE by @%--4ut overall the conclusions reached
were similar. The two robust measures or errorafointents and purposes, produced equivalent
results. Whether the MAPE really overstates foreeasr or whether the robust measures
actually understate error is open to debate. Aflean inflated MAPE provides important
information. However, for comparative purposes sibmeasures of forecast error are more
useful. Because the analysis deals with a larg@lsarthe issues with using a median-based
measure of error are of less concern here, wisiladvvantages — especially its familiarity and
ease of interpretation — still apply. The analyisét follows will therefore be restricted to the

Median APE and Median ALPE as summary measuresretést accuracy and bias.

RESULTS
1900-2000 vs. 1930-2000
The population projections analyzed in this studgdal on decennial census data include every

base year from 1900-1980, every launch year frob®49990, and every target year from



1920-2000, thus effectively covering the entir® 28ntury. As such, the study greatly extends
earlier tests of forecast accuracy and bias byyapph wider range of dates than previously
examined. While several studies have analyzed &stesrrors of state projections going back to
1900 (see e.g. Smith and Sincich 1990, 1991),ahge of years included at the county level has
been much smaller (see e.g. Smith 1987). Going tma&R0O0 at the county level necessitated
making choices in order to preserve the compatglufithe data. In particular, it was decided to
exclude all those counties from the analysis thpegenced a significant boundary change at
any point in time between 1900 and 2000. This teduh a total N of 2,482, or about 79% of all
counties in existence in the year 2000.

To check whether this sample remains represegtafithe universe of counties, the first
part of the analysis examines results for the srimgd 1930-2000, for which comparable data
are available for the majority of present day c@msltTable 1 displays Median APEs by
projection horizon (10-50 years plus the overadirage) for each of the 7 primary projection
techniques plus the three averages. For each pajdwrizon, the top line represents results
from the subset of counties that experienced nuifsignt boundary change since 1900
(N=2,482), while the bottom line shows resultsdtircounties that did not change after 1930
(N=2,978).

The table makes clear that the Median APEs betieetwo datasets are very similar.
While for each projection horizon and each prof@ctechnique the Median APEs from the
subset of counties that did not change since 1898amewhat smaller, in most instances the

differences are not great. Moreover, for everygutpn horizon both datasets identify the same

! Starting the analysis in 1930 leads to a sample of 2 @Ti@®ies, or 94.8% of all counties in Census 2000. Since
most of the boundary changes and the creation of newiesunttcurred before 1930, using a later starting date
yields only small improvements in coverage, amounting tma0.4% per decade between 1930 and 1950, and
about 0.8% per decade thereafter. At the same time, the nuniimeseoperiod/projection horizons that can be
analyzed decreases substantially with each later starting date.



projection technique providing the highest andltvaest MAPES, thus leading to similar
conclusions. The general comparability of the tamples is confirmed by an analysis of bias,
using Median ALPEs as indicators (data not showe)he

Thus, although there are some small differences@nall projection accuracy whether
one includes all the counties that have not expeeé significant boundary changes since 1930,
or only those that did not change since 1900, timelasions reached are the same. In order to
include the maximum number of projection horizond hase periods, the remainder of the
paper will therefore focus on the subset of couwniié=2,482) that goes back to 1900. Starting in
1900 rather than 1930 more than doubles the nuofl@ojection horizons and base periods
from 54 to 125, which is of great significance esalty for the analysis of the longer projection

horizons for which the 1930-2000 analysis wouldehprovided very few cases or none at all.

Projection Horizon — Base Period Relationship

Few studies have specifically addressed the isktieaelationship between the length of the
projection horizon and the length of the base jgerogeneral recommendation is that the two
should correspond to one another (Alho and Spel®®r). Smith and Sincich (1990), in a study
of 10-30 year projection horizons at the statelldeand that while increasing the length of the
base period up to 10 years improved forecast acgufarther increases had little effect. The
only exception were long-range forecasts (20-30sydar rapidly growing states, where
increasing the base period to 20 years resultednsiderably smaller MAPEs for projections
using the exponential and shift-share techniquesidJa longer base period also reduced the
upward bias of long-range forecasts for rapidlywgng states. Beaumont and Isserman (1987)

also found that lengthening the base period fromtorfour decades increased accuracy and



reduced bias for state projections using the expiiadanethod. It had the opposite effect on
projections made with the linear method, whichtleeim to the conclusion that “the choice of
method and base period should be made togethanamaer that compensates for the presence
of regression to the mean” (1987:1006). This staWysits the relationship between the length of
the base period and that of the forecast horizéhn reispect to both accuracy and bias. Because
the data set covers the entiré"2@ntury, significantly more base period/forecastzon
combinations are investigated at a lower leveledgyaphy than previously attempted.

Table 2 shows Median APEs by projection horizod laase period for the seven primary
techniqgues plus the three averages. For each pordwrizon the Median APEs are displayed
for five different base periods, ranging from 1®tyears in length. Because CON holds the
population constant at the launch year value taeeno differences in Median APE among the
five base period§For the other methods, the choice of the base@é&@s some impact on
forecast accuracy. The most consistent resultprareded by COS, which exhibits an increase
in forecast accuracy the longer the base periodEX®, the ten year base period always
produces the highest Median APE, with relativetydidifference among the remaining longer
base periods. Conversely, SFT performs worst wib gear base period, with little constancy
among the other periods. The remaining three mstebdw no clear-cut pattern, except that the
10 year base period for all but the 20 year praeadtorizon have the highest errors. The three
averaging methods do not show much variation, leitlO year base period projections are
associated with the largest Median APEs for thgésih projection horizons as well.

Perhaps the most general impression that theidi@ble 2 convey is how minor the

differences in Median APE are among the five bas@gds. Except for COS, and to a lesser

2 COS holds the county’s share of the national populaiimistant at the launch year’s value, but different base
periods come into play in the form of the national projectiosed in their calculation.



extent SFT and EXP, the length of the base pereds to have a trivial impact on forecast
accuracy. Smith and Sincich (1990) concluded tbatgybeyond 10 years had a negligible
impact on forecast accuracy. The results obtainedis study, executed at the county level and
for more target years and longer projection horszéead to a similar conclusion, except that 20
years seems a better cut-off point, because extgride base period from 10 to 20 years yielded
some improvement in accuracy for most models.

Focusing on bias, Table 3 is structured analogadoslable 2, and shows the Median
ALPEs by projection horizon, base period, and tiga technique. Except for COS, all models
show mostly negative coefficients, in other wolttls inodels tended to under-project population.
The negative bias is most severe for SFT whered® &ws little bias. For most models,
except COS, the Median ALPEs increase with lengttiebase periods. This is in apparent
contrast to Smith and Sincich (1990), who foundaosistent relationship between MALPE and
the length of the base period. However, it is veltethat the pattern shown in Table 3 is the
result of a spurious relationship. That is, it @ the length of the base period but rather the
choice of launch and target years that determirees b

To check for spuriousness, Median ALPEs were ingatdd by launch year for each
projection horizon (data not shown). The generttepa was that launch year had a much greater
impact on bias than the length of the projectionzum. For example, for a 10 year projection
horizon all five projections with a 1990 launch yeame out too low, all five projections with a

1980 launch year were too high, and all five prioggxs with a 1970 launch year were too low.

% Table 2 shows only a marginal improvement in terms of tdi&h APE for the exponential method when the
base period is extended beyond 10 years. This hides thbdagbing from 10 to 20 years has a significant impact
for this method with respect to the potential for extrentéess. For a 50 year projection horizon, extending the
base period from 10 to 20 years reduced the MAPE from tlliema to below 10,000, while going to 40 years
brought the MAPE down to 612 (data not shown). Whilkisflated, and still representing highly unrealistic
projections for individual counties, it demonstrates th&eexe rates of population growth or decline tend to
moderate over time, and that for counties with particulatjadipn change regimes the choice of the length of base
period can make a significant difference.
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Both the 1990s and especially the 1970s were peobdtrong growth for the average county
(see Table 4). In fact, the median county growthrnduthe 1970s was the highest of any decade
during the 28 century Thus, projections made for 1980 and 2000 that as&dpolations of
population change of a previous decade consistantlgr-projected population for those target
years. In contrast, projections for 1920-1960 inegal turned out to be too high, which again
can be explained by the higher average growth cateeg the early years of the century shown
in Table 4. The pattern is somewhat more complerteypret for the longer projection horizons,
but the general conclusion remains: the later targars, which saw rapid average growth rates
over the projection horizon, had a strong tendeadye too low, which can be explained by the
lower average growth rates experienced during tidecentury base periods upon which the
projections were based.

The reason why the 10 and 20 year projections sbssvbias than the longer projection
horizons is a function of the weight particulagtryears obtain in the calculation of the
averages. For every projection horizon, there aseemrojections available for later target years
than for earlier target years. For example, thezdfige 50 year projections for 2000 representing
10-50 year base periods, but only 1 for 1960. Bezawerage growth rates were highest in the
latter decades of the ®@entury, most projections for these target yeaewoo low. Yet the
averages reported in Table 3, which show in gersrahcreasing bias with increasing
projection horizons and increasing base periodsskewed towards these later years, because

more projections are available for those yearss thiaating this spurious relationship.

* This is different from population change for the natieerall, where the 1970s had the third lowest grovitmng
decade of the Z0century. Furthermore, while the 1940s, 1950s, and 1€6@sed some of the highest growth rates
for the nation, the average county — as represented loyetiean — actually grew very little during that period.
Because each county in this study has the same weight witctes the calculation of the accuracy and bias
measures, it is the average county population change ra#tmethte change for the nation that matters.
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In reality it is very difficult if not impossibleotestablish the impact the length of the base
period has on the bias for a given projection lwriZl hat is because bias for trend extrapolation
methods is determined by both population changes ttne projection horizon and the base
period. If growth over the base period was strotigean between the launch and the target year,
the projections will turn out too high, and vicesee The same is not true with respect to
accuracy. In general, accuracy of the projecti@wehses fairly linearly with increasing
projection horizons. As seen in Table 2, for eachytear projection horizon the average absolute
percent error increases by about 7-8%. Within @agjection horizon, there is some variation
due to different target years and different basegddengths, but compared to the bias measure
the differences are minor, and they do not follogpacific pattern. Thus, while projection bias is
largely determined by the differential populatidranges experienced over the base period and
the projection horizon, the accuracy of the progest is most affected by the length of the

projection horizon, with particular base, launaig garget years playing a less important role.

Accuracy and Bias by Trend Extrapolation Model
Tables 5a and 5b show the Median APEs and ALPES(€50 year projection horizons with 20
year base periods by projection technique. Thee2d pase period projections were chosen here
because, as the data in Table 2 have demonsttiaged,was a slight improvement in accuracy
over the 10 year projections for most models. Ghiegond 20 years made virtually no
difference with respect to accuracy, and it alsoldave reduced the number of projection
models left in the analysis.

Tables 5a and 5b demonstrate the value of averagihthree averages produced

projections with higher accuracy, as measured byMbadian APE, than most primary
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techniques; indeed AV7 showed lower Median APEs #iray primary technique for all
projection horizons. The averages performed almsstell with respect to bias; only EXP and
MLN were as good or better. Of the seven primapjgmtion techniques, LIN, MLN, EXP, and
CON showed the lowest Median APEs, and SFT and tt®8ighest. SFT and COS also had
the most bias, which was strongly negative for 8Rd strongly positive for COSEXP and
MLN were the least biased of the individual tecluas|.

The data in Table 5a illustrate quite clearly hbe &ccuracy of the projections declines
with increasing projection horizons. This is a wedtablished fact in the projections literature
(see e.g. Keyfitz 1981; Smith and Sincich 1992{&tb983). For most projection methods the
relationship between accuracy and the length optbgction horizon is linear or nearly linear
(Smith and Sincich 1991). This is reflected in Bab&, where for each of the ten techniques the
Median APE goes up with increasing projection hamiz=or all methods but SFT and COS,
extending the projection horizon carries a penafitgbout 6% to 8% for each ten years, while
for the former the increase in error is higher.

In contrast to accuracy, with respect to bias tlegists no consistent relationship to the
length of the forecast horizon. According to Snaitid Sincich (1991:272), “MALPEs differed
from one forecasting technique to another, from sime-growth category to another, from one
launch year to another, and over the length ofdhecast horizon.” Table 5b appears to prove
otherwise — showing a generally increasing biah \eihgthening forecast horizon — but the
Median ALPEs of the individual projection horizoa8e period combinations, upon which the

averages shown in Table 5b are based, varied toauextent that they are almost meaningless

® For most decades of the"™@entury the population of the United States has become mucerteated. This can
be seen by both rising Gini coefficients and by decreasédjan county proportions of the national population
(data not shown). COS holds each county’s share of thenadpopulation constant at some past value, thus
leading to projections that are too high on average.
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(data not shown). Thus, while some projection teges involve more bias than others, it is

believed that there exists no consistent relatipnishthe length of the forecast horizon.

Accuracy and Bias by Trend Extrapolation Model, Popilation Size, and Population

Growth

Following the general analysis of forecast accumy bias for all counties in the United States,
the study now shifts to the investigation of cougtgupings that share similar population
characteristics. The attributes most commonly iigated for this purpose include population
size and the rate of population growth or declBah have been found to be important and
consistent determinants of the accuracy of praest{lsserman 1977; Murdock et al. 1984;
Smith 1987; Smith and Sincich 1988; Tayman et 298] White 1954). As a general rule,
projections made for larger places tend to be raoceirate than those for smaller places, and
projections made for slow to moderately growingcpkatend to be more accurate than those for
fast growing and declining places. Up to now, themeclusions have been based on studies
using a limited universe of counties and/or a kedistudy period. The present analysis extends
previous studies by investigating the size/grovatie relationship to forecast accuracy and bias
for all counties in the country that had comparafalea available for the entire 2@entury, thus
greatly enhancing the ability to make generalizegiabout the findings.

In order to be most useful for practical purpogegpulation size in this study is measured
at the launch year and the rate of population gnawtdecline refers to that over the base period.
With respect to population size, the analysis mligtishes between six categories: less than
2,500, 2,500 to 7,500, 7,500 to 15,000, 15,006, 30,000 to 100,000, and more than

100,000 persons. For the rate of growth, ten categare investigated: less than -15%, -15% to
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-10%, -10% to -5%, -5% to 0%, 0% to 5%, 5% to 1Q@6 to 15%, 15% to 25%, 25% to 50%,
and more than 50% growth per decade over the magelpln delineating these categories a
compromise had to be made between having the fotssible gradation with respect to the
population characteristics and having a sufficremhber of cases in each category. The latter
was important, because the analysis spans sucligditoe period, and the size and growth
characteristics were applied uniformly to any ldugear and base periéd.

The data shown in Figures 1-4 focus on the LIN,, 3P, CON, and AV7 methods,
and only display results for 10 and 20 year pragechorizons. Overall, results for MLN and
SHR were similar to LIN, while AV5 and AV3 were cparable to AV7. The results for COS
were rather different from most other primary potien techniques, showing most affinity with
the other constant technique, CON. However, becalufee overall low accuracy and high bias
of the method, as well as its rarity in actual uis&as not considered further in detail. Giventtha
most sub-state population projections are prodémed0 year or shorter horizons, Figures 1-4
only display accuracy and bias for 10 and 20 yeaizbns.

Figure 1 displays the Median APE for the six pagioh size categories. For each of the
five methods, the bars are ordered from left thtrigpresenting increasing county population
sizes. As expected, the accuracy of the countyeptiojns improves the larger the county. For
both projection horizons and every technique exC£pi, the Median APE decreases
consistently from the smallest to the second langepulation size category, with the most

significant increase in accuracy noted between tiesihaving a population of less than 2,500

® The chosen delineations resulted in size categories thatédcaideast 50 counties in every launch year, and in
growth categories that included at least 30 counties. Ma=j@a¢s, however, were significantly larger. In a
companion study (Rayer 2005), the same relationships wereadalging three different summary measures of
error and the analysis also included a visual examinatitmeahdividual APEs and ALPEs. The relatively small
number of cases in some size/growth categories did not tfeentsults as to preclude the use of a median-based
summary measure of error.

 Although not presented in Figures 1-4, the three qifierary projection techniques remain in the analysis and
were used, as before, in the calculation of the averages.
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and those having a population of 2,500 to 7,508qres. Interestingly, for every method and
both projection horizons, the Median APEs incresgain for counties in the largest size
category. While for most techniques this increasemall, for EXP and CON the largest size
category shows Median APEs that are among the siglie@ny size category, especially for 20
year projection horizons.

What accounts for this decrease in accuracy gtbup of counties with the largest
populations? There is no conceptual justificatiwat tould explain it. Tayman et al. (1998:9)
note that the relationship between the size ob#s® population and forecast precision is a
consistent finding in the forecast literature —ldrger the base the smaller the error, and vice
versa — and that instances of past studies thatiffdaviations to this pattern at the very large or
very small size categories were due to their |[dduéficient cases in those categories. In order
to check whether the increase in Median APE shawkigure 1 results from small sample size,
the APEs for individual counties within each of the largest size categories were plotted
separately for each target year for 10 and 30 gegection horizons for the EXP method (data
not shown). Both groups had a similar shape irdisibution of the individual county APEs.
While for most target years the two size categasiesved comparable Median APES, in several
years the accuracy of the projections for the strgize category was clearly lower than that for
counties in the 30,000 to 100,000 size group. Buerof the individual target year charts
pointed to small sample size as the root causei®tinexpected finding.

The real explanation for the elevated Median ARBS & largest size category lies with
the confounding effects of the underlying growttesaof counties in each size category. When
the Median APEs for the two largest size categaviere disaggregated by the population

growth rates observed over the base period, wihah growth category the results were
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comparable between the two size groups. Howevepitbportion of counties of the two largest
size categories that fell into the highest grovdtegory varied significantly. For every target
year there were proportionately more counties @>th00,000 size category that experienced
growth rates exceeding 25% (22.5% to 55.9%) thasmtiva case for the 30,000 to 100,000 group
(10.4% to 21.0%, respectively). As will be showmmnore detail below, the highest growth rates
are generally associated with the largest foremasts, especially for the exponential method.
The higher Median APEs for the largest size categhown in Figure 1 are therefore due to the
fact that these counties experienced higher groatds, on average, than counties in the next
smaller size category over the base period, antbnmbpulation size effects as such.

Figure 2 is structured analogously to Figure 1,fbatises on population growth rates
observed during the base period. The figure diffeates between ten population growth
regimes: four that involve population losses (<%41515% to -10%, -10% to -5%, -5% to 0%),
and six that represent population gains (0% to B%to 10%, 10% to 15%, 15% to 25%, 25%
to 50%, >50%). The chart confirms the well-knowshaped form of the relationship between
forecast accuracy and population growth: errordaagest for counties at both ends of the
growth spectrum — those that experienced signifidanlines and those that grew rapidly. The
individual projection techniques differ with respéz whether high rates of population decline or
growth produce larger errors in forecast accur&€yl, and to a lesser extent LIN, show higher
errors for counties with strong population declingkile for EXP the fastest growing counties
are projected with the lowest accuracy. Theseioglships also hold for longer projection
horizons. However, it needs to be pointed out tiaigrowth categories are not symmetrical.

There are more categories of counties that expmtepopulation growth (6) than those that
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declined (4). Furthermore, the top growth cateqof0%) is significantly greater numerically
than the top category representing population desl{<-15%}.

In a separate analysis (data not shown) the projectvere rerun with symmetrical
growth categories (< -15%, -15% to -10%, -10% & -55% to 0%, 0% to 5%, 5% to 10%, 10%
to 15%, >15%). For 10 and 20 year projection harizdhe Median APEs for EXP and CON
were very similar for each corresponding growtlegaty (e.g. -10% to -15% vs. 10% to 15%),
but for longer projection horizons for EXP the lkesggrowth category (>15%) produced
significantly greater errors than its correspondiategory on the negative end. For LIN and
especially SFT, negative growth rates were geneaskociated with larger errors. For SFT, the
differences were very pronounced in that evendhgelst growth category (>15%) produced
smaller errors than all negative growth categagia=ept -5% to 0% for all projection horizons.
This reiterates the caution that is advised ingisatio methods when the population change
patterns in the smaller area are in the opposieetion of those of the larger area (for a
discussion of this issue see Smith et al. 2001:189}- In this study, the larger area was always
the nation, which experienced population growtkach base period. Thus, the sign issue with
the ratio techniques only applies to negative cpgndwth rates. In these instances, higher
growth in the nation would lead to larger declimeghe county, which probably is not very
realistic. Although there are ways to adjust therechniques in these cases, none are
completely satisfying, and the high errors assediatith the SFT technique should be

interpreted in this light.

8 The categories were chosen to provide the most amodetaif given the limitations imposed in order to have a
sufficiently large sample for the calculation of the error messsiEhowing forecast error for counties with high
rates of population growth was considered more impbtteam achieving perfect symmetry between the categories
on both sides of the growth spectrum.
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For counties with growth patterns close to zerostnmeethods provide comparable results
for shorter projection horizons, though SFT showarger errors on the negative side. For
rapidly declining counties, EXP and CON, as welA8& provide projections with the lowest
errors in terms of accuracy. In fact, for counttest declined more than 15%, CON provides the
lowest Median APE of any technique at every progechorizon, and the technique is very
competitive for counties in the other categoriethwyiopulation declines as well. CON also does
well for high growth counties, especially for lomgeojection horizons. The latter seems
counterintuitive, but may be explained by the comiw@bserved tendency of extreme growth
patterns to moderate over time, showing a regredsiward the mean (Smith et al. 2001:319—
320). Thus, while CON generally under-projectspgbpulation of those counties (see below),
many of the other methods produce projectionsatatoo high, which results in elevated APEs.
This is particularly true for EXP, the techniquattiyenerates by far the greatest forecast errors
for fast growing counties. Finally, Figure 2 alsntbnstrates the value of averaging. For every
projection horizon and every growth category, AVisws Median APEs that compare very
favorably to those of the primary projection tecjugs.

The discussion above regarding the uncharactexilsticigh Median APESs registered in
the largest size category stresses the importdramecounting for both size and growth in an
analysis of forecast error. When both charactessire accounted for simultaneously, the above
described relationships to forecast accuracy $stagame. Within each size category, there
remains a u-shaped relationship depending on thetgmpattern over the base period, and
smaller counties tend to have greater forecastsethan larger counties irrespective of

population growth (data not shown).
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Figures 3 and 4 are analogous to Figures 1 andt2his time focusing on the bias of the
projections as represented by the Median ALPE.reiGushows that for LIN and SFT there
exists a consistent relationship between populaip® and projection bias. While all size
categories but the largest were under-projected, Wwas greatest for the smallest counties. EXP
and AV7 follow a similar general pattern, but tleéationship is not as clear-cut. CON stands out
in showing an essentially inverse relationship caragd to the other techniques. For most
technigues, extending the projection horizon frditd 20 years accentuates the ten-year
pattern.

Figure 4 displays the Median ALPE by growth r&#nilar to the analysis by population
size, the relationship between the county chanatteand bias varies in a consistent fashion, but
the relationship appears to be even stronger dlmhvioa clear stepwise pattern in which the
Median ALPE either continuously increases or desgsalong the growth spectrum. Once more,
LIN, SFT, and EXP follow a similar pattern with CQjé¢ing in the opposite direction. For
counties that experienced population declines thaeebase period, LIN, SFT, and EXP have a
tendency to under-project the target populationewtdunties that grew are likely to have
projections that turn out too high with these md#har his result lends further support to the
notion that population change patterns moderate towve, i.e. regress towards the mean (Smith
1987). SFT shows the most negative bias for dexiocbunties while EXP produces the most
positive bias on the other end of the growth spectiClearly, EXP and SFT should be used
with caution for counties with these growth patsedaN, while slightly more biased than EXP
for the declining counties, shows the lowest biasrall of the primary projection techniques.
AV7 once more performs well, exhibiting levels édbas low as or lower than the primary

projection techniques.
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As with the analysis of forecast accuracy, acdagribr population size and growth
simultaneously produces the expected results wgpect to bias: Within each size category,
counties with declining populations over the baseagal tended to get under-projected with most
methods (except for the constant techniques, wémgein exhibit an inverse relationship), while
smaller counties exhibit more bias than larger tiesncontrolling for population growth (data
not shown).

There are several ways to look at bias. In additothe algebraic percent error, the
percent of all projection errors that are posi{@enegative) is sometimes used to determine the
tendency of a technique to either under- or ovejegt. Whereas the Median ALPE considers
the magnitude of bias, the percent positive medsuareses on the overall tendency of a
projection to be too high or too low. It is brieflyentioned here because it illuminates a different
angle of bias. In a companion study by the autheas found that for most methods, the two
error measures provide comparable results (Ray@s)26or CON, however, the percent
positive measure leads to a different conclusiandéscribed above, somewhat surprisingly,
CON performed quite well both with respect to aecyrand bias. Although the method
consistently under-projects counties that grew ¢lverbase period, CON is less plagued than
most other techniques to take on large valuesrof,ewhich manifest themselves especially for
longer projection horizons. However, when lookeft@in the perspective of the proportion of
all county projections that are too high or too |olae method showed more bias than most.
Thus, while CON avoids large errors, the methaglige biased in that it under-projects a
significant proportion of all counties with partlaugrowth regimes. This serves as a reminder
that one should look at more than one summary meadwerror before making a determination

regarding the choice of the appropriate projecteminique for the task at hand.
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CONCLUSION
This study of county population projections purstwed primary objectives. It first examined the
relationship between the length of the base permatithe length of the projection horizon with
respect to forecast accuracy and bias. The maiinfirwas that the length of the base period has
a rather limited impact on the accuracy of thegutpns. The results do not support the notion
that the length of the base period should corregpoithe length of the forecast horizon, as Alho
and Spencer (1997) suggest. Nor are 10 years retessifficient, as Smith and Sincich (1990)
recommend, because extending the base periodyted28 yielded some improvement in
accuracy for most methods, and not just for EXP @IRd. Further lengthening had a negligible
effect. For the exponential method, which can retendency to produce extremely high
population forecasts, especially for the longejjgmtion horizons, lengthening the base period
had a considerable impact on individual county gebpns, albeit this was almost impossible to
discern when using a robust measures of forecamst er

The observed relationship between the length ob#tse period and bias was deemed to
be spurious. Bias is highly dependent on the chai¢ke launch and target years, and the
discrepancy between population change patternstbgdrase period and those over the
projection horizon. This confirms the conclusiofi$Smith and Sincich (1991), who found no
consistent errors with respect to bias.

The second objective of the analysis was to ageessast errors of the various trend
extrapolation techniques. First, the methods wraengned for the entire set of counties. This
was followed by a more detailed analysis where tiesnwere grouped by population

characteristic, i.e. population size at the lauyedr, and the rate of population growth or decline
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over the base period. Building upon the findinggareling the impact of base period length on
forecast accuracy and bias, the analysis wasatestrio twenty year base periods. To make the
discussion of results more manageable, the firdlgfahe paper was further limited to a subset
of the ten individual projection techniques, anel phimary focus was on the ten and twenty year
projection horizons.

The aggregate analysis revealed that many ofrihjeqtion techniques produced
comparable results, though SFT and COS showedisamily higher Median APEs. All three
averages were highly competitive with respect tedast error, being as good as or better than
any individual method. There was slightly more dgence among the methods in terms of bias.
As was true for accuracy, SFT and COS producedtbatest errors: SFT greatly under-
projected the population and projections made @@ came out much too high overall. CON
had a distinct negative bias, which makes sensngdivat most counties have grown over the
past century. EXP showed the least bias, but thigtapplied when a robust summary measure
of error was used.

The disaggregate analysis of forecast accuracysdby population size and growth
confirmed many of the findings of earlier studilest did so using a significantly enlarged data
set with respect to time and space, thus strengifpeheir conclusions. The analysis showed that
both size and growth impact the projections. Aseexgd, with increasing population size the
projections become more accurate. However, masteoimprovement comes at fairly low levels
of population size. The accuracy of the projectiactially decreased for counties in the largest
size category, but this result was shown to beedriyy this county group’s underlying growth
characteristics. Indeed, it could be argued the¢pixfor perhaps the smallest counties

population size alone is only a limited indicatbfarecast accuracy, and that growth dynamics
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are of greater importance. With respect to thedathe study revealed an essentially perfectly u-
shaped relationship for all methods, with fore@asturacy being lowest for counties that were
declining or growing rapidly and highest for coestiwith little change in either direction over
the base period. Individual techniques varied at #ome produced greater errors for counties
experiencing population declines while others wagaificantly less accurate for fast growing
counties. As in the aggregate analysis, forecastracy decreased with increasing projection
horizons. The joint analysis by both size and ghoednfirmed these relationships in general.

In addition to variations in forecast accuracy, itidividual projection techniques also
revealed differences in bias by size and growtbgmaty. Once again, the relationships were
stronger with respect to population growth tharhwize. Perhaps the most striking finding of
the entire paper was the consistent stepwise pditdween bias and population growth shown
in Figure 4. For counties that experienced popahatieclines over the base period, LIN, SFT,
and EXP all under-projected the target year popmriat while those that grew were projected
too high. The stronger the population declinecharéased over the base period, the more
negative or positive the bias of the ensuing pt@es. This result underscores the tendency of
population growth patterns to moderate over timelands strong support to the notion of a
regression towards the mean. The analysis wasragactive in showing that one group of
techniques, i.e. those that hold the populatiorstao, follow a different path. While not
necessarily suitable as a primary choice of prmaanethod, when used in combination with
the other methods — as was done in this studyeificim of three averages — the outcome can be
positive.

The generally good performance of the three averages another major finding of this

study. Throughout, the methods that involved theraging of all the primary projection

24



technigues, or a trimmed version thereof, showedmgnthe highest levels of accuracy and the
lowest amount of bias of any technique. Averagewhhiques have long been advocated for
forecasts in various fields (see e.g. Armstrongl2@@akridakis et al. 1982; Webby and
O’Conner 1996), but have been surprisingly raneapulation projections. The results from this
study, executed for a large sample of countiesfand very long time horizon, should
encourage practitioners of population projectiansbre seriously consider combining different
projection techniques.

While all three averages provided good results,esainat surprisingly AV7, which
includes all seven primary projection techniquesnany instances came out on top. The reason
for this has to do with that particular techniqnearporating a variety of methods that each have
their own strengths and weaknesses, and which exdhalance each other. This was most
apparent in the discussion of bias where the cont#ahniques showed the opposite pattern of
the remaining primary techniques with respect ze sind especially growth. In this sense, using
both types of methods in a projection — those ithailve some aspect of constancy and those
that reflect change — works in a similar fashiom tiversified investment portfolio that includes
stocks and bonds or other types of securitiesahens of which are negatively correlated. The
trimmed averages often exhibited more bias andidswels of accuracy because they excluded
exactly those beneficial “outliers.” In practiceptigh, one has to weigh the benefits of this
finding, especially when looking at individual pecjions, for it may well turn out that the low
Median APEs reported for AV7 mask a number of usoeable county projections —
particularly those produced by SFT and EXP at leoiths of the growth spectrum — and that a

mean-based measure of error might lead to a differoice of projection technique. Yet none
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of this should detract from the potential of avemggwhich for many purposes can lead to more
satisfactory projections than any particular priynairojection technique by itself.

Another avenue worth further investigation involvegher than indiscriminately
calculating an average out of all techniques, minamed version thereof, the development of a
targeted average based on those methods showrthie beost appropriate for a county’s
particular size and growth profile. This is analogdo the “composite” approach as advocated
by Isserman (1977). Smith and Shahidullah (199p)ieg this process for census tracts and
found that excluding EXP for fast growing placed & T for slowly growing and declines
places produced more accurate projections tham@leiaverage, but comparatively little
research has been devoted to this issue. Thegdsut the present study suggest that counties
that experienced population declines over the pased might best be served by the
exponential and/or constant method. At the same, tihe exponential method had the greatest
difficulty with fast growing counties, and shoultbpably not be used for these counties. This
analysis took first steps towards the developméatraore targeted approach to choosing
projection techniques appropriate for the undedgydemographic processes of the study areas.
Population projections inevitably involve many uolkums. We will never be able to perfectly
project a population all of the time. However, thedailed analysis presented in this paper
regarding the relationship between forecast acguaad bias and selected county population
characteristics revealed sufficiently consistentgoas that make the endeavor worth the try, and

it is towards this goal that further research wéldirected.
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Table 4. % Change in Population per Decade by TimBeriod

Mediar Mear Nationa
Time Periol All Counties All Counties Total
190(-191C 8.8 44 21.C
191(-192( 3.€ 9.C 15.C
192(-193( 2.4 19.¢ 16.2
193(-194( 4.4 6.2 7.2
194(-195( 0.C 4.3 14.5
195(-196( -0.2 6.C 18.5
196(-197( 1.¢ 5.2 13.£
197(-198( 12.2 16.2 11.4
198(-199( 1.3 4.C 9.6
199(-200( 8.4 11.1 13.1
190(-192( 6.3 17.2 17.€
191(-193( 3.3 9.1 15.¢
192(-194( 3.2 8.2 11.7
193(-195( 2.3 4.€ 10.¢
194(-196( -0.1 4.€ 16.5
195(-197( 1.C 5.1 15.¢€
196(-198( 7.2 10.2 12.£
197(-199( 6.€ 9.8 10.¢€
198(-200( 4.8 7.3 11.5
190(-193( 4.¢ 14.F 17.£
191(-194( 3.2 7.2 12.7
192(-195( 2.C 6.2 12.¢€
193(-196( 1.€ 4.€ 13.c
194(-197C 0.t 4.4 15.4
195(-198( 4.¢ 8.2 14.£
196(-199( 5.4 7.C 11.5
197(-200C 7.2 10.1 11.4
190(-194( 4.7 11.2 14.¢
191(-195( 2.4 6.C 13.2
192(-196( 1.5 5.€ 14.C
193(-197C 1.€ 4.5 13.c
194(-198( 3.7 6.S 14.£
19E0-199( 4.C 7.C 13.2
196(-200( 6.2 8.€ 11.€
190(-195( 3.8 9.2 14.7
191(-196( 2.C 5.E 14.2
192(-197( 1.¢ 5.2 13.€
193(-198( 4.C 6.5 13.C
194(-199( 3.1 6.1 13.t
195(-200( 5.C 7.€ 13.2
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