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ABSTRACT 

 

Many studies have evaluated the impact of differences in population size and growth rate on 

population forecast accuracy.  Virtually all these studies have been based on aggregate data; that 

is, they focused on average errors for places with particular size or growth rate characteristics.  In 

this study, we take a different approach by investigating forecast accuracy using regression 

models based on data for individual places.  Using decennial census data from 1900 to 2000 for 

2,482 counties in the United States, we construct a large number of county population forecasts 

and calculate forecast errors for 10- and 20-year horizons.  Then, we develop and evaluate 

several alternative functional forms of regression models relating population size and growth rate 

to forecast accuracy; investigate the impact of adding several other explanatory variables; and 

estimate the relative contributions of each variable to the discriminatory power of the models.  

Our results confirm several findings reported in previous studies but uncover several new 

findings as well.  We believe regression models based on data for individual places provide 

powerful but under-utilized tools for investigating the determinants of population forecast 

accuracy.  
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INTRODUCTION  

Population projections at the state and local levels are used for a wide variety of planning, 

budgeting, and analytical purposes.  Although they are sometimes used simply to trace out the 

implications of a particular set of hypothetical assumptions, they are used most frequently as 

forecasts of the future population.  The importance of the purposes for which these forecasts are 

used— for example, opening a new business, closing a public school, enlarging a power plant, or 

revising local bus routes—makes it essential to evaluate their precision and bias.   

 Many studies have investigated the impact of population size and growth rate on forecast 

accuracy by analyzing forecast errors within broad size and growth rate categories.  Measuring 

population size in the launch year and growth rate over the base period, these studies have 

generally found precision to improve with increases in population size and decline with increases 

in the absolute value of the growth rate (e.g., Keyfitz 1981; Rayer 2008; Smith and Sincich 1992; 

Stoto 1983; White 1954).  They have found bias to have little or no relationship with population 

size but to be positively related to the growth rate (e.g., Isserman 1977; Rayer 2008; Smith 1987; 

Tayman 1996).  These results have been found so frequently that we believe they can be 

accepted as general characteristics of population forecast errors.  

 All of the studies cited above were based on aggregate data; that is, they focused on 

average errors for places with particular size or growth rate characteristics.  It is clear, however, 

that errors often vary substantially within given size or growth rate categories.  For example, 

although small places have larger errors than large places on average, some small places have 

very small errors and some large places have very large errors.  What is the impact of population 

size and growth rate on forecast accuracy when analyzed using data for individual places?  What 
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variables other than size and growth rate also affect accuracy?  How can these effects best be 

evaluated?  These questions have seldom been addressed in the literature.   

 In this study, we investigate population forecast accuracy from a disaggregate 

perspective.  Using a data set covering 2,482 counties in the United States for each census year 

from 1900 to 2000, we construct county population forecasts and calculate forecast errors for 10- 

and 20-year horizons.1 Then, we develop and evaluate several alternative regression models in 

which population size and growth rate are used as explanatory variables and forecast error as the 

dependent variable.  We extend the analysis to include three additional explanatory variables: 

prior forecast error, geographic area (defined here as census divisions), and launch year.  Finally, 

we estimate the relative contribution of each explanatory variable to the discriminatory power of 

the models.  The specific questions we address are: 

1)  Which functional form of a single-variable regression model best describes the 

relationships between forecast accuracy and population size and growth rate? 

2)  Can multivariate models improve on the performance of single-variable models? 

3)  How does the inclusion of prior error, census division, and launch year affect the 

regression results for population size and growth rate? 

4)  What are the relative contributions of each explanatory variable to population forecast 

accuracy? 

 We are aware of only two studies using regression analysis to investigate population 

forecast accuracy, one based on aggregate data and one based on data for individual places.  

Tayman, Schafer, and Carter (1998) used aggregate data to analyze differences in average 

forecast error by population size and growth rate for a number of small geographic areas in San 

Diego County.  Lenze (2000) used data for individual places but did not evaluate alternative 
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functional forms of the regression model, did not account for the direction of forecast error, and 

analyzed only one set of 5-year forecasts for 67 counties in Florida.  To our knowledge, this is 

the first study to evaluate alternative forms of the regression model; to investigate the effects of 

population size, growth rate, and several other variables on forecast accuracy; to account for both 

the size and direction of error; and to cover a large number of places, multiple time periods, and 

several forecast horizons.   

 Regression analysis illuminates patterns that cannot otherwise be observed and provides a 

means for testing hypotheses regarding the determinants of population forecast accuracy.  We 

believe the present study provides a fresh perspective on forecast accuracy and deepens our 

understanding of the factors making some forecasts more accurate than others.  

 

DATA  

We conducted our analyses using a data set covering all counties in the United States that did not 

experience significant boundary changes between 1900 and 2000 (Rayer 2008).  This data set 

included 2,482 counties, 79 percent of the national total.  For each county, we collected 

information on population size in the launch year (the year of the most recent data used to make 

a forecast), growth rate over the base period (the 10 years immediately prior to the launch year), 

and forecast errors for 10- and 20-year horizons.  The launch years included all decennial census 

years from 1910 to 1990 for 10-year horizons and from 1910 to 1980 for 20-year horizons.2 

 Forecasts for each launch year were derived from five extrapolation techniques: linear, 

exponential, share of growth, shift share, and constant share (Rayer 2008).  The forecasts 

analyzed in this study were calculated as an average of the forecasts from these five techniques, 
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after excluding the highest and lowest.  Forecasts refer solely to total population; no forecasts of 

age, sex, race, or other demographic characteristics were made.   

 Simple techniques such as these are frequently used for small-area forecasts and have 

often been found to produce forecasts of total population that are at least as accurate as those 

produced using more complex techniques (e.g., Chi 2009; Long 1995; Murdock et al. 1984; 

Rayer 2008; Smith and Sincich 1992; Stoto 1983).  An important benefit of these techniques is 

that they are based on readily available data and can be applied retrospectively to a large data set.  

Given the similarity of errors when different techniques are applied to the same data set, we do 

not believe the results reported here are affected by the choice of forecasting technique. 

 Forecast error was calculated as the percent difference between the population forecasted 

for a particular year and the population for that year counted in the decennial census.  Errors 

were measured in two ways, one ignoring the direction of error (called “absolute” percent error) 

and the other accounting for the direction of error (called “algebraic” percent error).  The first is 

a measure of precision and the second is a measure of bias.   

 Table 1 summarizes population size and growth rate characteristics for counties in the 

data set.  Although mean population size more than tripled between 1900 and 2000, median size 

increased by only 53%.  The 90th percentile population size grew by 278%, but the 10th 

percentile size grew by only 46%.  Mean growth rates were higher than median growth rates in 

every decade and varied more over time.  In most decades, 40-50% of counties lost population.  

For more detailed information on the data set and forecasting techniques, see Rayer (2008). 

(Table 1 about here) 

 Table 2 provides a summary of the relationships between average forecast errors and the 

five explanatory variables examined in this study, using discrete categories for each variable and 
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forecasts covering 10-year horizons.3 As shown in the top two panels, mean absolute percent 

errors (MAPEs) had a negative relationship with population size and a u-shaped relationship 

with the growth rate.  Mean algebraic percent errors (MALPEs) had a weak positive relationship 

with population size and a considerably stronger positive relationship with the growth rate.  

Similar results were found for 20-year horizons (not shown here).  These relationships are 

consistent with findings reported in many previous studies.  

(Table 2 about here) 

The next two panels show the relationship between prior error and forecast accuracy.  

Prior absolute percent errors displayed a strong positive relationship with subsequent MAPEs but 

no clear relationship with subsequent MALPEs.  Prior algebraic percent errors displayed a strong 

u-shaped relationship with subsequent MAPEs and a strong negative relationship with 

subsequent MALPEs.  That is, prior absolute errors were related to the precision but not the bias 

of subsequent forecasts, whereas prior algebraic errors were related to both precision and bias.  

Again, results for 20-year horizons were similar to those shown here for 10-year horizons. 

The negative relationship between prior algebraic errors and MALPEs may seem 

puzzling at first, but it can be understood in light of the finding that extreme growth rates tend to 

regress toward the mean over time (e.g., Smith 1987).  For example, suppose that a county grew 

unusually rapidly between 1950 and 1960.  As a result of this growth, the forecast for 1960 made 

in 1950 was too low (i.e., the error was negative).  Because of the rapid growth between 1950 

and 1960, growth was forecasted to be rapid between 1960 and 1970.  With regression to the 

mean, however, growth between 1960 and 1970 was less than forecasted, leading to a positive 

error in 1970.  The negative error for 1960 was thus associated with a positive error for 1970.  
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Given these patterns, it is not surprising that MALPEs tend to be positive for counties with 

negative prior errors and negative for counties with positive prior errors.   

The final two panels show errors for census divisions and individual launch years.  

MAPEs were lowest in the Northeast and Midwest and highest in the South and West, but 

MALPEs showed no clear relationship with the location of census divisions. With respect to 

launch year, MAPEs followed no clear pattern over time, fluctuating within a narrow range of 9-

14%.  MALPEs also followed no clear pattern over time, but fluctuated over a considerably 

wider range (-9% to 9%).  Larger year-to-year variations in MALPEs than in MAPEs have been 

noted previously (e.g., Smith and Sincich 1988).   

 

REGRESSION MODELS AND ANALYSES   

Table 2 illustrates the approach followed in most studies of population forecast accuracy; 

namely, using aggregate data to compare average errors for places with different values of a 

given characteristic.  In this study, we go beyond this approach by constructing regression 

models based on data for individual counties.  We use two data sets, one containing all 10-year 

forecasts with launch years from 1910 to 1990 and one containing all 20-year forecasts with 

launch years from 1910 to 1980.  Our dependent variables are absolute and algebraic percent 

errors; these are measures of precision and bias, respectively.  We use several explanatory 

variables and functional forms to construct a number of different regression models. 

 We started with population size and growth rate as explanatory variables; these are the 

variables most frequently used in evaluations of population forecast accuracy.  We calculated 

growth rates as absolute values in regressions related to precision and as algebraic values in 

regressions related to bias; we refer to these variables as GR-Abs and GR-Alg, respectively.  We 
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constructed two simple single-variable models, one with population size as the explanatory 

variable and the other with the growth rate.  Then, we evaluated alternative functional forms of 

each single-variable model and chose the optimal form; we refer to these as complex single-

variable models.  Then, we combined size and growth rate in a multivariate model.  Finally, we 

added prior error, census division, and launch year as explanatory variables in the multivariate 

model. 

 Based on the findings of previous studies and the data shown in Table 2, we hypothesize 

that increases in population size will improve precision but have little impact on bias; that 

increases in the absolute value of the growth rate will reduce precision; and that increases in the 

algebraic value of the growth rate will reduce downward bias in counties losing population and 

raise upward bias in counties gaining population (i.e., they will have a positive effect on 

algebraic percent errors).   

 Population size and growth rate are not the only factors affecting forecast accuracy, of 

course.  Other factors that may be important are economic conditions (e.g., job openings, wage 

rates, cost of living), social conditions (e.g., educational opportunities, racial discrimination), 

demographic conditions (age structure, ethnic composition), and environmental conditions (e.g., 

pollution levels, water supplies).  Although our data set does not contain information pertaining 

directly to these factors, we have selected three explanatory variables that may reflect their net 

impact: prior error, census division, and launch year.   

 Prior forecast errors reflect the impact of factors other than population size and growth 

rate that make it particularly easy or difficult to forecast accurately.  These errors may provide 

useful predictors of future errors.  For example, the 10-year forecast error for launch year 1950 

may provide a useful predictor of the 10-year forecast error for launch year 1960.  We calculated 
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prior errors using the same number of years as were included in the forecast horizon (e.g., for 

forecasts with a 20-year horizon, we used the error for the 20-year forecast ending in the launch 

year).  As we did with growth rates, we used absolute values of prior errors in regressions related 

to precision (Prior-Abs) and algebraic values in regressions related to bias (Prior-Alg).  Based on 

the data shown in Table 2, we hypothesize that prior absolute errors will have a positive effect on 

subsequent absolute errors and prior algebraic errors will have a negative effect on subsequent 

algebraic errors. 

 We used census division as a proxy for geographic differences in economic, social, 

demographic, and environmental conditions and launch year as a proxy for changes in those 

conditions over time.  Census divisions and launch years were measured using a series of dummy 

variables.  For census division, the reference group was the South Atlantic division, a division 

with size, growth rate, and forecast error characteristics similar to those for the entire U.S.  For 

launch year, the reference group was 1960, near the middle of the century and a year with a 

moderate forecast error.  We do not have any a priori expectations regarding the effects of these 

two variables on precision or bias. 

 Prior error, census division, and launch year are illustrative of the types of explanatory 

variables that could be used in regression analyses of forecast accuracy.  They are particularly 

appropriate for the present study because they are available for all counties and decennial census 

years.  Other variables could also be used, of course. 

 

Simple Single-Variable Models 

Regression coefficients and adjusted R2 values for the simple single-variable models are shown 

in Table 3.  The top panel shows the results for absolute percent errors.  In every instance, the 
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explanatory variable had the expected sign and was statistically significant: Increases in 

population size reduced errors and increases in the absolute value of the growth rate raised 

errors.  However, as shown by the small adjusted R2 values, neither variable explained much of 

the variation in forecast errors.  Increasing the length of the forecast horizon had little impact on 

either the regression coefficients or the adjusted R2 values.  

(Table 3 about here) 

 The bottom panel of Table 3 shows the results for algebraic percent errors.  Population 

size had a significant positive effect on algebraic errors for both forecast horizons, contradicting 

our hypothesis.  However, the coefficients were much smaller than they were for absolute errors 

and the adjusted R2 values were very small.  Both of these results suggest that population size 

had little impact on bias; we return to this point later in the paper.  As hypothesized, the growth 

rate had a significant positive effect on algebraic errors for both forecast horizons.  Again, 

increasing the length of the forecast horizon had little impact on regression coefficients and 

adjusted R2 values.  

 

Complex Single-Variable Models  

Although the simple single-variable models produced statistically significant results, neither 

variable was able to explain much of the county-to-county variation in forecast accuracy.  Can 

more complex models improve on these results?  To answer this question, we explored several 

alternative functional forms of the simple single-variable models.  We refer to these as complex 

single-variable models because they include non-linear relationships and often include more than 

one term for each explanatory variable. 
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Our investigation of complex models was guided by the literature on population forecast 

accuracy.  Several studies have found the relationship between population size and precision to 

weaken (or disappear completely) once a certain size has been reached (e.g., Smith 1987; Smith 

and Shahidullah 1995; Tayman 1996; Tayman, Schafer, and Carter 1998); this suggests that 

asymptotic functions such as the natural log or inverse might be applicable.  Numerous studies 

have reported no consistent relationship between population size and bias (e.g., Isserman 1977; 

Rayer 2008; Smith 1987; Tayman 1996).  Although this does not suggest any particular 

functional form, the natural log will reduce the impact of several very large counties.  The 

positive relationship often found between growth rates and absolute percent errors suggests that a 

continuously increasing function, such as the natural log, might be applicable.  Algebraic percent 

errors have been found to be large and negative for areas with large population declines and to 

become smaller but still negative as those declines become smaller, eventually becoming small 

but positive for areas with slowly growing populations and large and positive for areas with 

rapidly growing populations (Isserman 1977; Murdock et al 1984; Smith 1987; Tayman 1996).  

This suggests a polynomial function might be appropriate.  

 We considered several alternative models for each explanatory variable.  We started with 

a simple linear model and sequentially added squared and cubed terms; we followed the same 

process using the natural log of each variable.  We also considered inverse, compound, and 

power functions.  Then, we selected the optimal model for each variable, defined as the model 

having the fewest parameters, simplest specification, and highest adjusted R2 value.  Our 

selection criteria were that an additional parameter or more complex specification (e.g., natural 

log rather than the variable itself) had to be statistically significant and add at least 1% to the 

adjusted R2 value of the model.  Because the discriminatory power of significance tests tends to 
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decline as sample size increases (Henkel 1976), these criteria helped us determine whether a 

particular parameter made a substantive contribution to the explanation of forecast error.  Details 

of the model selection procedures are available from the authors on request.   

(Table 4 about here) 

 The variables included in the optimal complex models, along with regression coefficients 

and adjusted R2 values, are shown in Table 4.  The top panel shows the results for absolute 

percent errors.  For population size, the optimal model included the natural log and its square.  

Both terms had significant effects on forecast errors for both horizons.  The natural log had a 

negative effect and its square had a positive effect, indicating that increases in population size 

reduced absolute percent errors at a declining rate.  These results are consistent with our 

hypotheses and the findings of previous studies.  Coefficients for both terms increased (in 

absolute value) as the forecast horizon became longer.  Adjusted R2 values were substantially 

larger than for the simple single-variable model and were larger for 10-year horizons than 20-

year horizons.  The asymptotic nature of the relationship between population size and absolute 

percent error can be seen in Figure 1, which shows that gains in precision became fairly small 

after counties reached a size of about 25,000.   

(Figure 1 about here) 

 For growth rate, the optimal model included the natural log, its square, and its cube for 

10-year horizons but only the natural log and its square for 20-year horizons.  The coefficient for 

the natural log was negative for 10-year horizons, positive for 20-year horizons, and statistically 

significant for both.  The squared term was positive and significant for both horizons and the 

cubed term was positive and significant for the 10-year horizon.  The net result was the expected 

positive relationship between the absolute value of the growth rate and absolute percent errors.  
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This relationship was also asymptotic, especially for 20-year horizons (see Figure 2). Again, 

adjusted R2 values were substantially larger than for the simple single-variable model and were 

larger for 10-year horizons than 20-year horizons. 

(Figure 2 about here) 

 The bottom panel of Table 4 shows the results for algebraic percent errors.  The optimal 

model for population size included the natural log but not its square; this implies that the 

flattening effect of the squared term found for absolute percent errors was not found for algebraic 

percent errors.  This variable had a small but significant positive effect on algebraic errors for 

both horizons (see Figure 3).  The slope of the curve was relatively flat (except for very small 

counties) and the low adjusted R2 values indicate that population size did not explain much of the 

variation in algebraic percent errors.  The regression coefficient increased with the length of the 

forecast horizon, but the adjusted R2 value remained virtually unchanged.   

(Figure 3 about here) 

 The optimal model for growth rate included linear, squared, and cubed terms for both 

forecast horizons.  All three were significant for both horizons, with the linear and cubed terms 

having positive signs and the squared term a negative sign.  The overall impact of the growth rate 

on algebraic percent errors was positive, but the size of the squared and cubed terms was so 

small that the relationship between the two was nearly linear (see Figure 4).  Forecasts had the 

greatest downward bias in counties with the largest percentage declines, but the magnitude of the 

downward bias declined as growth rates increased, becoming positive when they reached 

approximately 10%.  Regression coefficients for all three terms increased (in absolute value) 

with the length of horizon, as did the adjusted R2 value.   

(Figure 4 about here) 
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 For both forecast horizons and both error measures, adjusted R2 values were larger for 

growth rate models than population size models.  This implies that differences in growth rates 

did a better job of explaining variations in forecast errors than did differences in population size.  

The particularly low R2 values for population size in the algebraic error regressions once again 

demonstrate the lack of a consistent relationship between population size and the direction of 

forecast errors.  For growth rates, adjusted R2 values were roughly the same in regressions 

involving absolute percent errors as in regressions involving algebraic percent errors, suggesting 

that growth rates did about equally well in explaining variations in precision and bias.   

 

Multivariate Models   

Complex single-variable models clearly outperformed simple single-variable models in terms of 

discriminatory power.  Can we raise discriminatory power even more by combining population 

size and growth rate in a multivariate model?  What happens if we sequentially add prior error, 

census division, and launch year as explanatory variables?  To answer these questions, we 

constructed a series of multivariate regression models.  Model 1 included population size and 

growth rate as explanatory variables, using the optimal functional forms shown in Table 4.  

Model 2 added prior error to the variables in Model 1.4  Model 3 added census divisions to the 

variables in Model 2 and Model 4 replaced census divisions with launch years.  Model 5 

contained all five explanatory variables.5 

 Basic regression results for the multivariate models are shown in Tables 5-8; a more 

complete description of model diagnostics is presented in the Appendix.  Table 5 shows the 

results for absolute percent errors for 10-year horizons.  For Model 1, coefficients for all the 

population size and growth rate terms were statistically significant and had the same signs as in 
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the optimal complex single-variable models.  The adjusted R2 value for the multivariate model 

was substantially higher than those found for either of the single-variable models, indicating that 

the multivariate model did a much better job of explaining variations in precision than did either 

of the single-variable models.   

(Table 5 about here) 

 Results for population size and growth rate were consistent across all five models.  In 

every instance, coefficients had the same sign and were statistically significant.  The coefficients 

themselves were similar in every model (especially Models 2-5).  This high level of consistency 

is striking and supports the validity of the results.  Even as other explanatory variables were 

added, the effects of population size and growth rate remained largely unchanged. 

 As expected, prior absolute error had a significant positive effect on absolute percent 

errors: the greater the error during the base period, the larger the error over the forecast horizon.  

However, as indicated by the negative sign of the squared term, this effect declined as prior error 

became larger.  The coefficients for both prior error terms changed very little from one model to 

the next.   

 The New England and the West North Central divisions had significant negative effects 

on absolute percent errors and the East South Central, West South Central, Mountain, and Pacific 

divisions had significant positive effects.  Apparently, the first two divisions had characteristics 

making it easier to forecast the population precisely (compared to the reference group), whereas 

the latter four had characteristics making it more difficult.  Coefficients were not statistically 

significant for the Mid Atlantic and East North Central divisions.6   

 Four of the first five launch years had significant positive effects on absolute percent 

errors while the last two had negative but not statistically significant effects.  It appears that it 
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has become somewhat easier to construct precise population forecasts in recent decades.  Based 

on the adjusted R2 values, census division and launch year added about equally to the 

discriminatory power of the models. 

 Multivariate models clearly did a better job than single-variable models in explaining 

variations in the precision of population forecasts.  Furthermore, adjusted R2 values rose steadily 

as explanatory variables were added.  This suggests that searching for other determinants of 

forecast error may lead to further improvements in the discriminatory power of the models.   

 Table 6 shows the results for absolute percent errors for 20-year horizons.  For every 

model, the signs and levels of significance for the population size variables were identical to 

those found for 10-year horizons.  For growth rate, however, the optimal model included only 

two terms rather than three.  The sign of the linear term changed from negative to positive and 

the coefficient of the squared term remained positive but increased substantially in size.  The 

overall impact of the growth rate on precision thus remained positive, just as it was for 10-year 

horizons.  In most instances, the coefficients for the population size and growth rate terms were 

considerably larger for 20-year horizons than for 10-year horizons, suggesting that the effects of 

both variables persisted over time.   

 Prior error had the same signs and levels of significance as for 10-year horizons, but the 

coefficients themselves were substantially smaller, suggesting that the impact of this variable 

faded over time.  The signs and levels of significance for most census divisions were the same 

for both 10- and 20-year horizons, but results for individual launch years were inconsistent from 

one horizon to another. 

(Table 6 about here) 
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 Table 7 shows the results for algebraic percent errors for 10-year horizons.  For 

population size, coefficients were positive and statistically significant for four of the five models. 

The impact of population size was trivial, however: The adjusted R2 value for the multivariate 

model containing population size and growth rate was no greater than for the complex model 

containing only the growth rate (see Table 4).  For growth rate, coefficients for all three terms 

were statistically significant in every model and had the same signs as in the complex single-

variable model.  The growth rate coefficients themselves varied within a fairly narrow range, 

especially for Models 2-5.  Again, we believe this supports the validity of the results.   

(Table 7 about here) 

 The linear term for prior algebraic percent error had a significant negative effect on 

algebraic percent errors in Models 2-5 and the squared term had a significant but much smaller 

positive effect, yielding a negative overall effect, as hypothesized.  Three census divisions had 

significant positive effects in Model 3 and four in Model 5; two had significant negative effects 

in both models.  The first four launch years had positive errors and two of the last three had 

negative errors (compared to the reference group); this may reflect a shift in bias over time, but 

the evidence is weak.  Adjusted R2 values increased steadily as explanatory variables were added 

to the model, but the addition of the prior error and launch year variables had a much greater 

impact than did the addition of census divisions.   

 Table 8 shows the results for algebraic percent errors for 20-year horizons.  In almost 

every instance, signs and levels of significance for the population size and growth rate variables 

were the same as for 10-year horizons.  The coefficients for the growth rate variables were 

substantially larger for 20-year horizons than 10-year horizons, reflecting the persistence of those 

effects over time.  For prior error, signs and levels of significance for the linear term were the 
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same as for 10-year horizons but the coefficients themselves were considerably smaller (there 

was no quadratic term for 20-year horizons).  Moreover, whereas adding prior error to the first 

multivariate model substantially raised adjusted R2 values for 10-year horizons, there were 

virtually no improvements for 20-year horizons. Again, we believe this suggests that the impact 

of prior error fades over time.  The signs and levels of significance for census division and 

launch year were generally the same as for 10-year horizons, but the coefficients themselves 

were substantially larger.   

(Table 8 about here) 

 In most instances, adjusted R2 values for both 10- and 20-year forecast horizons were 

larger for regressions involving absolute percent errors than regressions involving algebraic 

percent errors.  As noted previously, this suggests that the explanatory variables did a better job 

of explaining variations in precision than variations in bias.  However, the addition of the launch 

year variables reduced this gap considerably, indicating that these variables had a greater impact 

on bias than on precision. 

 For absolute percent errors, adjusted R2 values were larger for 10-year horizons than 20-

year horizons for all five models.  For algebraic percent errors, the same was true for every 

model except Model 1.  This suggests that the ability of the explanatory variables to explain 

differences in forecast errors declines as the forecast horizon becomes longer.  This is not 

surprising, of course: the longer the time period, the greater the likelihood that statistical 

relationships will change.   
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Relative Impact of Explanatory Variables   

Our analysis thus far has focused on modeling the effects of population size and growth rate on 

forecast accuracy and evaluating the impact of adding other explanatory variables to the 

regression model.  All the variables we considered were found to have statistically significant 

effects in most instances.  We turn now to the question of which explanatory variable has the 

greatest impact on precision and bias.  One way to answer this question is to measure the 

reduction in the adjusted R2 value that occurs when one variable (including the complex forms of 

size, growth rate, and prior error variables) is removed from the fully specified multivariate 

model (Model 5).  We interpret this reduction as a measure of each variable’s contribution to the 

model’s discriminatory power: the greater the reduction, the greater the impact of that variable 

on forecast error.  The results are shown in Table 9. 

(Table 9 about here) 

 For absolute percent errors, differences in growth rates contributed the most for both 

forecast horizons.  Removing the growth rate variables reduced adjusted R2 values by 6.5 and 8.9 

percentage points for 10- and 20-year horizons, respectively.  Population size was also important, 

with the third largest impact for both 10- and 20-year horizons (3.1 and 3.3 percentage points, 

respectively).  Prior error was the second most important variable for 10-year horizons but the 

least important for 20-year horizons.  Neither census division nor launch year had much impact 

for 10-year horizons, but launch year had the second largest impact for 20-year horizons.    

 For algebraic percent errors, differences in launch year had the greatest impact on 

adjusted R2 values for 10-year horizons, followed closely by prior error.  Removing these 

variables reduced adjusted R2 values by 6.8 and 6.0 percentage points, respectively.  Launch year 

remained important for 20-year horizons (reduction of 5.3 percentage points), but prior error did 



 19

not (reduction of only 0.2 percentage points).  Growth rate had the third largest impact for 10-

year horizons (reduction of 3.8 percentage points) and by far the greatest impact for 20-year 

horizons (reduction of 12.2 percentage points).  Census division had relatively little impact on 

algebraic percent errors for either horizon and population size had virtually no impact at all.   

 What conclusions can we draw from these results?  First, it is clear that—of the five 

explanatory variables we examined—the growth rate had the greatest impact on the precision of 

population forecasts.  It was an important determinant of bias as well, especially for longer 

horizons.   Second, population size had a substantial impact on precision but not on bias.  

Although the regression analyses showed population size to have a statistically significant effect 

on algebraic percent errors, the magnitude of that effect was very small.  Third, prior error had 

important short-term effects on both precision and bias, but its influence faded substantially over 

time.  Fourth, differences in census division had significant but rather small effects on both 

precision and bias.  Finally, differences in launch year had a greater effect on algebraic percent 

errors than on absolute percent errors, especially for 10-year horizons.  As has been noted before 

(e.g., Smith and Sincich 1988), it appears that the direction of forecast errors varies more from 

one launch year to another than does the absolute size of those errors.  

 

SUMMARY AND CONCLUSIONS  

In this study, we used regression analysis to examine the effects of several explanatory variables 

on the precision and bias of population forecasts for a large sample of counties in the United 

States.  Regression models make it possible to conduct more detailed analyses than can be done 

using more traditional approaches.  Perhaps more important, they make it possible to test 
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hypotheses regarding the determinants of forecast accuracy.  We believe regression analysis 

provides a powerful but under-utilized tool for evaluating population forecast errors. 

 We started by focusing on population size and growth rate, the variables most frequently 

considered in analyses of population forecast accuracy.  Using data for individual counties, we 

developed several regression models, some using a simple linear form of a single explanatory 

variable, some using more complex forms of each variable, and some using both variables in a 

multivariate model.  For simple single-variable models, we found that both population size and 

growth rate had statistically significant effects on precision and bias, but that neither variable 

could explain much of the variation in forecast errors.  More complex forms of the single-

variable models performed considerably better in this regard and a multivariate model containing 

both size and growth rate performed better still.  Adding several other explanatory variables 

further enhanced the model’s discriminatory power.   

 In terms of specific empirical results, we found that differences in population size had a 

significant non-linear impact on precision but little effect on bias and that differences in growth 

rates had significant effects on both precision and bias.  These results are consistent with those 

reported in many studies using aggregate data.  We also found that the explanatory variables did 

a better job explaining differences in precision than differences in bias and that growth rates had 

an asymptotic relationship with precision.  To our knowledge, the latter two results have not 

been reported before. 

 We investigated the impact of three explanatory variables not usually considered in 

analyses of population forecast accuracy: prior error, census division, and launch year.  We 

found that prior error had a statistically significant effect on both precision and bias, but that its 

impact declined considerably as the forecast horizon became longer.  Differences in census 
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division and launch year also had significant effects on forecast accuracy, with the latter having a 

particularly large impact on bias.  These two variables pick up the effects of omitted variables 

that influence forecast accuracy and vary across geographic areas and over time, respectively.7   

 This study provides perhaps the most comprehensive analysis yet of the determinants of 

population forecast accuracy and illustrates the value of developing regression models based on 

data for individual places.  The fully specified multivariate models were able to explain between 

24% and 33% of the variation in county forecast errors; this degree of discriminatory power is 

impressive for large cross-sectional data sets.  Future research will undoubtedly extend our 

analysis to include additional explanatory variables and functional forms.  Investigations of the 

impact of variables measuring economic, demographic, and environmental characteristics—and 

changes in those characteristics over time—are likely to be particularly important.  Such research 

not only will add to our understanding of the determinants of population forecast accuracy, but is 

likely to lead to the development of more accurate forecasting models as well.  
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END NOTES 

1.  Counties include county equivalents in the District of Columbia, Louisiana, Missouri, and 

Nevada. 

2.  Several studies have found that base periods of 10 years are generally sufficient to produce 

the most accurate forecasts possible (e.g., Rayer 2008; Smith and Sincich 1990).  We replicated 

our analyses using forecasts derived from 20-year base periods and found results similar to those 

reported here. 

3.  We show errors only for launch years 1920 through 1990 because those were the years used 

in the regression analyses. 

4.  We also investigated alternative functional forms of the prior error variable.  A quadratic 

model outperformed a simple linear model for 10-year horizons but not for 20-year horizons.  

We therefore included both linear and squared terms in models covering 10-year horizons but not 

in models covering 20-year horizons.  Logged models did not perform better than non-logged 

models for either horizon. 

5.  In order to include prior error as an explanatory variable, the regression analyses began with 

launch year 1920 for forecasts covering 10-year horizons and 1930 for forecasts covering 20-

year horizons. 

6.  We investigated the effect of using states rather than census divisions as a measure of 

geographic differences.  We found this change to slightly raise adjusted R2 values (from 0.329 to 

0.333 for APEs and from 0.299 to 0.310 for ALPEs) but to have virtually no impact on the 

regression coefficients of the other explanatory variables. 
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7.  We also analyzed the relationship between forecast errors and population size and growth rate 

using data for individual census divisions and launch years.  In most instances the results were 

similar to those reported here for the entire sample.  The only exception was the relationship 

between algebraic percent errors and population size for individual launch years.  Errors rose 

with population size for some launch years and declined for others.  Once again, this reflects the 

absence of a consistent relationship between population size and bias.   
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a Based on the quadratic function of the natural log of population size. For ease of interpretation, 

population size is expressed as untransformed values.

Figure 1.  Prediction of Absolute Percent Errors Using Population Size
a
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a Based on the cubic function of the natural log of the absolute value of the growth rate for 10-

year horizons, and on the quadratic function of the natural log of the absolute value of the growth 

rate for 20-year horizons. For ease of interpretation, the horizontal axis is expressed as the 

untransformed absolute value of the growth rate.

Figure 2.  Prediction of Absolute Percent Errors Using Growth Rate
a
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a Based on the natural log of population size. For ease of interpretation, population size is 

expressed as untransformed values. 

 

Figure 3.  Prediction of Algebraic Percent Errors Using Population Size
a
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a Based on the cubic function of the growth rate.  

Figure 4.  Prediction of Algebraic Percent Errors Using Growth Rate
a
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Table 1.  County Population Size and Growth Rate Characteristics, 1900-2000

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Size

Mean 26,126 30,787 35,044 40,615 43,336 49,453 58,502 66,122 72,950 79,054 88,574

Median 16,930 17,975 18,462 18,570 19,285 19,269 19,236 19,454 22,651 23,376 25,936

10
th

 Percentile 4,104 5,530 5,877 6,514 6,417 6,151 5,786 5,574 6,066 5,827 6,001

90
th

 Percentile 44,308 49,178 56,920 65,812 72,544 83,852 99,382 115,342 136,608 148,605 167,474

Growth Rate
a

Mean 44.0 7.7 20.8 5.9 4.0 5.3 5.5 15.4 3.6 10.7

Median 8.8 3.0 2.2 4.3 0.1 0.0 2.2 11.5 1.0 8.0

10
th

 Percentile -8.1 -10.8 -11.6 -8.8 -16.3 -16.4 -12.6 -4.0 -11.4 -4.0

90
th

 Percentile 68.4 29.8 33.0 19.5 26.4 30.3 26.2 37.0 21.1 28.7

% Negative 29.6 40.2 42.6 30.7 49.6 50.0 43.0 17.8 46.7 22.2

a
 Percentage change over previous 10 years.  
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Table 2.  Error Characteristics of Counties, 

               10-Year Forecast Horizons

MAPE MALPE Sample Size

Size

< 5,000 20.9 -6.0 1,469

5,000 to 9,999 14.4 -2.5 2,966

10,000 to 24,999 11.3 -0.9 7,486

25,000 to 49,999 9.5 -0.5 4,135

50,000 to 99,999 9.3 0.3 1,948

100,000+ 8.7 0.8 1,852

Growth Rate
a

< -10% 15.9 -14.7 2,799

-10.0 to 0% 8.9 -4.0 5,159

0.0 to 9.9% 9.0 0.1 5,654

10.0 to 24.9% 11.5 4.0 3,807

25.0 to 49.9% 15.6 6.8 1,704

50.0+% 27.4 15.4 733

Prior Abs. % Error

< 2.0 8.5 -1.4 2,499

2.0 to 3.9 8.7 -1.3 2,433

4.0 to 7.9 9.2 -0.9 4,300

8.0 to 14.9 10.5 -1.1 5,142

15.0 to 24.9 13.6 -0.6 3,251

25.0+ 23.2 -2.1 2,231

Prior Alg. % Error

<-15.0 19.4 9.1 2,646

-15.0 to -8.0 11.4 2.9 2,643

-7.9 to 0.0 9.0 0.0 4,746

0.0 to 7.9 8.7 -2.4 4,486

8.0 to 14.9 9.6 -5.2 2,499

15.0+ 15.7 -10.8 2,836

a
 Percentage change for 10 years prior to launch year  
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Table 2 (con).  Error Characteristics of Counties, 

                         10-Year Forecast Horizons

MAPE MALPE Sample Size

Census Division

New England 6.6 -0.8 456

Mid Atlantic 7.3 -0.5 1,152

East North Central 8.6 -1.1 3,432

West North Central 9.9 -0.2 4,512

South Atlantic 10.8 -1.9 3,000

East South Central 11.5 -1.4 2,632

West South Central 17.3 -1.0 2,872

Mountain 21.7 -2.7 880

Pacific 15.6 -2.9 920

Launch Year

1920 13.2 -0.6 2,482

1930 14.1 0.8 2,482

1940 13.2 3.0 2,482

1950 9.7 -2.1 2,482

1960 10.6 -2.4 2,482

1970 12.5 -9.2 2,482

1980 10.9 8.7 2,482

1990 9.0 -7.3 2,482  
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Table 3.  Simple Single-Variable Regression Models: 

                Unstandardized Coefficients and Adjusted R
2
 Values

Horizon Length

10-year 20-year

Absolute % Errors

Population Size

Size -0.003 *** -4.5E-06 ***

Adjusted R
2

0.003 0.002

Growth Rate

GR-Abs 0.023 *** 0.026 ***

Adjusted R
2

0.031 0.017

Algebraic % Errors

Population Size

Size 2.9E-06 *** 7.8E-06 ***

Adjusted R
2

0.001 0.003

Growth Rate

GR-Alg 0.032 *** 0.043 ***

Adjusted R
2

0.032 0.024

*** Significant at the .001

  ** Significant at the .01

    * Significant at the .05  
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Table 4.  Complex Single-Variable Regression Models:  

                Unstandardized Coefficients and Adjusted R
2
 Values

Horizon Length

10-year 20-year

Absolute % Errors

Population Size

Ln Size -20.150 *** -30.493 ***

(Ln Size)
2

0.857 *** 1.290 ***

Adjusted R
2

0.091 0.065

Growth Rate

Ln GR-Abs -0.514 *** 0.673 **

Ln (GR-Abs)
2

0.451 *** 1.434 ***

Ln (GR-Abs)
3

0.143 *** ---

Adjusted R
2

0.153 0.126

Algebraic % Errors

Population Size

Ln Size 1.413 *** 2.774 ***

Adjusted R
2

0.010 0.011

Growth Rate

GR-Alg 0.249 *** 0.449 ***

(GR-Alg)
2

-8.3E-05 *** -1.5E-04 ***

(GR-Alg)
3

6.8E-09 *** 1.2E-08 ***

Adjusted R
2

0.149 0.164

*** Significant at the .001

  ** Significant at the .01

    * Significant at the .05  
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Table 5.  Multivariate Regression Models: Unstandardized Coefficients and 

                Adjusted R
2
 Values, 10-Year Horizons (Absolute % Errors)

Model 1 Model 2 Model 3 Model 4 Model 5

Ln Size -14.778 *** -9.220 *** -8.764 *** -9.751 *** -9.366 ***

(Ln Size)
2

0.582 *** 0.347 *** 0.329 *** 0.375 *** 0.362 ***

 Ln GR-Abs -0.613 *** -0.400 *** -0.416 *** -0.305 ** -0.322 ***

(Ln GR-Abs)
2 

0.487 *** 0.390 *** 0.357 *** 0.408 *** 0.375 ***

(Ln GR-Abs)
3

0.141 *** 0.101 *** 0.098 *** 0.097 *** 0.094 ***

Prior-Abs 0.231 *** 0.209 *** 0.225 *** 0.203 ***

Prior-Abs
2

-1.3E-04 *** -1.1E-04 *** -1.2E-04 *** -1.1E-04 ***

New England -1.073 * -1.187 *

Mid Atlantic 0.111 -0.016

East North Central -0.170 -0.190

West North Central -1.026 *** -0.993 ***

East South Central 1.300 *** 1.333 ***

West South Central 2.811 *** 2.840 ***

Mountain 4.301 *** 4.309 ***

Pacific 1.385 *** 1.282 ***

1920 1.568 *** 1.669 ***

1930 2.800 *** 2.866 ***

1940 2.953 *** 2.964 ***

1950 -1.249 ** -1.197 ***

1970 2.386 *** 2.361 ***

1980 -0.343 -0.273

1990 -0.362 -0.429

Adjusted R
2

0.242 0.299 0.313 0.315 0.329

*** Significant at the .001

**   Significant at the .01

*     Significant at the .05  



 36

Table 6.  Multivariate Regression Models: Unstandardized Coefficients and 

                Adjusted R
2
 Values, 20-Year Horizons (Absolute % Errors)

Model 1 Model 2 Model 3 Model 4 Model 5

Ln Size -21.510 *** -16.589 *** -17.239 *** -18.206 *** -19.065 ***

(Ln Size)
2

0.823 *** 0.619 *** 0.660 *** 0.705 *** 0.758 ***

 Ln GR-Abs 0.531 ** 0.414 * 0.325 0.652 *** 0.560 **

(Ln GR-Abs)
2 

1.512 *** 1.367 *** 1.284 *** 1.413 *** 1.333 ***

Prior-Abs 0.127 *** 0.100 *** 0.122 *** 0.096 ***

New England -2.762 * -2.942 **

Mid Atlantic -0.774 -1.116

East North Central -2.128 *** -2.160 ***

West North Central -3.310 *** -3.155 ***

East South Central 2.392 *** 2.468 ***

West South Central 6.475 *** 6.371 ***

Mountain 4.442 *** 4.228 ***

Pacific -0.844 -1.417

1930 -0.504 -0.502

1940 5.070 *** 4.801 ***

1950 -4.562 *** -4.664 ***

1970 -4.274 *** -4.573 ***

1980 -9.252 *** -9.297 ***

Adjusted R
2

0.194 0.214 0.236 0.257 0.278

*** Significant at the .001

**   Significant at the .01

*     Significant at the .05  
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Table 7.  Multivariate Regression Models: Unstandardized Coefficients and 

                Adjusted R
2
 Values, 10-Year Horizons (Algebraic % Errors)

Model 1 Model 2 Model 3 Model 4 Model 5

Ln Size 0.157 0.395 *** 0.589 *** 0.546 *** 0.772 ***

GR-Alg 0.247 *** 0.153 *** 0.167 *** 0.138 *** 0.151 ***

(GR-Alg)
2 

-8.3E-05 *** -5.2E-05 *** -5.7E-05 *** -4.7E-05 *** -5.1E-05 ***

(GR-Alg)
3

6.8E-09 *** 4.3E-09 *** 4.7E-09 *** 3.9E-09 *** 4.3E-09 ***

Prior-Alg -0.265 *** -0.259 *** -0.259 *** -0.253 ***

Prior-Alg
2

1.3E-04 *** 1.3E-04 *** 1.3E-04 *** 1.3E-04 ***

New England 0.274 0.093

Mid Atlantic 0.655 0.398

East North Central 0.968 0.853 *

West North Central 3.812 *** 3.748 ***

East South Central 1.486 *** 1.411 ***

West South Central 1.330 *** 1.403 ***

Mountain -1.411 * -1.161 *

Pacific -3.907 *** -3.754 ***

1920 4.190 *** 4.144 ***

1930 2.913 *** 2.868 ***

1940 6.045 *** 6.034 ***

1950 1.820 *** 1.817 ***

1970 -6.918 *** -6.928 ***

1980 7.809 *** 7.674 ***

1990 -1.993 *** -2.071 ***

Adjusted R
2

0.149 0.221 0.232 0.289 0.299

*** Significant at the .001

**   Significant at the .01

*     Significant at the .05  
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Table 8.  Multivariate Regression Models: Unstandardized Coefficients and

                Adjusted R
2
 Values, 20-Year Horizons (Algebraic % Errors)

Model 1 Model 2 Model 3 Model 4 Model 5

Ln Size 0.367 0.365 0.728 *** 0.482 * 0.861 ***

GR-Alg 0.446 *** 0.428 *** 0.457 *** 0.406 *** 0.434 ***

(GR-Alg)
2 

-1.5E-04 *** -1.4E-04 *** -1.6E-04 *** -1.4E-04 *** -1.5E-04 ***

(GR-Alg)
3

1.2E-08 *** 1.2E-08 *** 1.3E-08 *** 1.1E-08 *** 1.2E-08 ***

Prior-Alg -0.043 *** -0.041 *** -0.040 *** -0.039 ***

New England -0.121 -0.225

Mid Atlantic 3.246 ** 3.098 **

East North Central 2.885 *** 2.823 ***

West North Central 8.882 *** 8.746 ***

East South Central 6.138 *** 6.053 ***

West South Central 5.192 *** 5.297 ***

Mountain -4.623 *** -4.375 ***

Pacific -8.924 *** -8.582 ***

1930 14.179 *** 14.091 ***

1940 18.382 *** 18.389 ***

1950 7.132 *** 7.180 ***

1970 2.376 ** 2.366 **

1980 16.551 *** 16.225 ***

Adjusted R
2

0.164 0.166 0.187 0.220 0.240

*** Significant at the .001

**   Significant at the .01

*     Significant at the .05  
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Table 9.  Adjusted R
2
 and Reduction in Adjusted R

2
 after Removing

                Explanatory Variables from Model 5

Absolute Algebraic

Percent Error Percent Error

Horizon Length 10 20 10 20

Adjusted R
2
 (Model 5) 0.329 0.278 0.299 0.240

Variable Removed 
a

Population Size 0.031 0.033 0.002 0.001

Growth Rate 0.065 0.089 0.038 0.122

Prior Error 0.042 0.010 0.060 0.002

Census Division 0.014 0.022 0.010 0.020

Launch Year 0.016 0.042 0.068 0.053

a
 Includes all terms for each variable  
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APPENDIX 

EVALUATION OF REGRESSION EQUATIONS 

 

 

 

Diagnostic Tools 

The following diagnostics provide a more complete evaluation of the regression equations.  The 

variables are those presented in the main body of the paper.  We use several diagnostic tools, as 

described in Belsley, Kuh, and Welsch (1980), Chatterjee and Hadi (1988), Draper and Smith 

(1981), and elsewhere.  For simplicity, we focus primarily on Model 5.   

 We calculated Cook’s D and DFBETA to evaluate the impact of influential observations 

on the regression results.  Cook’s D assesses the influence (i.e., scaled distance) of an 

observation on the estimated set of coefficients.  Values exceeding the conventional cut-off point 

(4 / n) indicate an observation that may excessively influence the regression results.  The 

DFBETA diagnostic assesses the effect of an individual observation on each estimated parameter 

in the model; for each parameter estimate, it calculates for each observation the standardized 

difference in the parameter estimate due to deleting the observation.  Absolute values exceeding 

the conventional cut-off point (2 / √n) indicate that a particular observation may be excessively 

influential.  We also plotted residuals against predicted y-values to check for heteroscedasticity 

and model misspecification, and created normal probability plots to check the normality 

assumption.   

The Variance Inflation Factor (VIF) is used to examine multicollinearity.  The VIF 

expresses the strength of the association between any two explanatory variables in the model.  A 

VIF value higher than 10 indicates that multicollinearity may be present.  We also examined the 

Predicted REsidual Sums of Squares (PRESS) statistic as a measure of a model’s predictive 

power.  The PRESS statistic measures how well the model predicts observed responses by fitting 
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the model repeatedly, leaving out one observation each time.  In each repetition, the model is 

used to predict the deleted observation.  There are no precise rules for interpreting PRESS 

values, but smaller values indicate greater predictive power.  

 

Cook’s D and DFBETA 

The tests show that Model 5 was affected by influential observations for both precision and bias 

for 10-year horizons.  For precision, 4.8% of the 19,856 observations had a Cook’s D value 

above the cut-off point, as did 5.1% of the observations for bias.  For each explanatory variable, 

between 1.7% and 7.2% of the observations had a DFBETA value exceeding the cut-off point for 

precision; for bias, the range was 2.0% to 7.1%.  For precision, 26.5% of the observations had at 

least one explanatory variable with a DFBETA value exceeding the cut-off point; for bias, the 

proportion was 26.2% (data not shown).  

 To examine the impact of influential observations, we reran Model 5 using only 

observations with Cook’s D and DFBETA values below the cut-off points.  Excluding the 

influential observations substantially raised the explanatory power of both equations.  For 10-

year horizons, adjusted R2 values increased from 0.329 to 0.491 for the precision regression and 

from 0.299 to 0.600 for the bias regression (see Table A1).  Coefficients were generally similar 

to the model that included all observations with the following exceptions: for precision, the 

coefficient for Prior-Abs2 became positive; for bias, the coefficient for Prior-Alg2 lost its 

statistical significance.  In addition, some dummy variable coefficients changed signs and 

significance levels (data not shown). 

(Table A1 about here) 

Results for 20-year horizons were generally similar to those for 10-year horizons.  

Excluding influential observations raised adjusted R2 values from 0.278 to 0.470 for the 
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precision regression, and from 0.240 to 0.517 for the bias regression (see Table A1).  For 

precision, the coefficient for Ln Gr-Abs changed sign and lost its statistical significance; for bias, 

the coefficient for Ln Size changed sign and lost its statistical significance.  

 

Residual and Normal Probability Plots 

Excluding influential observations had little impact on the shape of plots showing the 

relationship between residuals and predicted y-values for precision and bias for 10- and 20-year 

horizons (see Figure A1).  However, the range was considerably narrower when influential 

observations were excluded.  None of the plots indicated the presence of model misspecification 

or heteroscedasticity in the residuals.  

(Figure A1 about here) 

 For the full data set, normal probability plots showed a slight S-shaped pattern indicative 

of a non-normally distributed error term (data not shown).  When influential observations were 

excluded, the plots showed almost a perfectly straight line.  We do not consider small deviations 

from normality to be a problem.  The central limit theorem says that when errors are not 

normally distributed, a sufficiently large sample size will produce a normal sampling distribution 

of the regression coefficients.  Therefore, violations of this assumption usually have little or no 

impact on substantive conclusions for large samples.  

 

Variance Inflation Factor (VIF) 

For both 10- and 20-year horizons, all independent variables in Model 5 except Ln Size and  

(Ln Size)2 had VIF values below the cut-off point in the precision regression; in the bias 

regression, the same was true for all variables except GR-Alg, (GR-Alg)2 and (GR-Alg)3 (data 
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not shown).  For precision, rerunning the model without the higher order term for population size 

had only a trivial effect on the adjusted R2 value; for bias, rerunning the model without the 

higher order terms for growth rate resulted in a larger drop, especially for 20-year horizons (see 

Table A2).  All remaining coefficients for population size, growth rate, and prior error kept the 

same signs, and all but Ln GR-Abs kept the same level of significance (data not shown).  Thus, 

although multicollinearity was present for the two population size variables for precision, and for 

the three growth rate variables for bias, its presence had no substantive impact on the regression 

results. 

(Table A2 about here) 

 

PRESS  

For precision regressions with 10-year horizons, PRESS values for both population size and 

growth rate were lower for complex models than for simple models and declined as explanatory 

variables were added to the model (see Table A2).  These lower values reflect greater predictive 

power.  However, rerunning Model 5 without Ln Size2 (because of VIF issues) raised the PRESS 

value slightly.  Results were similar for 20-year horizons.  Overall, PRESS values and adjusted 

R2 values were consistent with each other and both pointed to Model 5 as the preferred 

specification. 

For bias regressions with 10-year horizons, PRESS values and adjusted R2 values were 

also consistent with each other in most instances.  PRESS values for population size were lower 

for the complex model than for the simple model, whereas for growth rate the opposite was true.  

PRESS values declined and adjusted R2 values increased as explanatory variables were added to 

Model 1; Model 5 had the highest adjusted R2 value, but PRESS values were slightly higher than 
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for Model 4, which shows that the census division dummy variables had little impact on bias.  

Excluding the higher order terms for growth rate from Model 5 (because of VIF issues) produced 

the lowest PRESS value, but adjusted R2 values dropped slightly compared to Models 4 and 5. 

For bias regressions with 20-year horizons, however, PRESS values and adjusted R2 

values were often inconsistent with each other.  The complex population size model had a 

slightly lower PRESS value than the simple population size model, but for the growth rate the 

complex model had a substantially higher PRESS value.  The first result was consistent with the 

adjusted R2 values, but the second was not.  Rerunning Model 5 without the higher order terms 

for growth rate (again, because of VIF issues) produced the lowest PRESS values for both 

horizons, but adjusted R2 values declined substantially.  For bias regressions with 20-year 

horizons, then, PRESS values and adjusted R2 values pointed in different directions with respect 

to the selection of the preferred model.  

 

Summary 

The diagnostics shown here largely support the empirical results presented in the main body of 

the paper.  For precision, Model 5 is clearly the preferred model according to both adjusted R2 

and PRESS values; furthermore, the multicollinearity between the two population size variables 

and the influential observations detected by Cook’s D and DFBETA statistics were found to have 

no substantive impact on the regression coefficients for any of the explanatory variables.  We 

also found that excluding influential observations led to substantial increases in the model’s 

explanatory power.   

 For bias, the findings were not quite as clear-cut.  Both VIF and PRESS values suggested 

that there were statistical issues regarding the higher order terms of the growth rate variable.  

PRESS values and adjusted R2 values did not always provide consistent results regarding the 



 45

choice of an optimal model, especially for 20-year horizons; this again illustrates the difficulty of 

explaining and predicting forecast bias.  Although these results do not change the general 

conclusions reported in this study, they highlight the need for additional research on the use of 

regression models for evaluating the accuracy of population forecasts. 
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Figure A1. Residual vs. Predicted Values: 

All Observations: 

 

a. 10-Year Absolute 

 
 

b. 20-Year Absolute 

 
 

c. 10-Year Algebraic 

 
 

d. 20-Year Algebraic 

 
 

Excluding Influential Observations:  

 

e. 10-Year Absolute 

 
 

f. 20-Year Absolute 

 
 

g. 10-Year Algebraic 

 
 

h. 20-Year Algebraic 
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Table A1a.  Multivariate Regression Models: Unstandardized Coefficients 

                    and Adjusted R
2
 Values, Model 5 (Absolute % Errors)

10 Year Horizons 20 Year Horizons

All Reduced All Reduced

Ln Size -9.366 *** -8.543 *** -19.065 *** -19.876 ***

(Ln Size)
2

0.362 *** 0.333 *** 0.758 *** 0.817 ***

 Ln GR-Abs -0.322 *** -0.463 *** 0.560 ** -0.218

(Ln GR-Abs)
2 

0.375 *** 0.317 *** 1.333 *** 1.296 ***

(Ln GR-Abs)
3

0.094 *** 0.104 *** - -

Prior-Abs 0.203 *** 0.176 *** 0.096 *** 0.114 ***

Prior-Abs
2

-1.1E-04 *** 4.8E-04 *** - -

Adjusted R
2

0.329 0.491 0.278 0.470

Table A1b.  Multivariate Regression Models: Unstandardized Coefficients

                    and Adjusted R
2
 Values, Model 5 (Algebraic % Errors)

10 Year Horizons 20 Year Horizons

All Reduced All Reduced

Ln Size 0.772 *** 0.291 *** 0.861 *** -0.039

GR-Alg 0.151 *** 0.273 *** 0.434 *** 0.824 ***

(GR-Alg)
2 

-5.1E-05 *** -0.003 *** -1.5E-04 *** -0.008 ***

(GR-Alg)
3

4.3E-09 *** 1.6E-05 *** 1.2E-08 *** 2.7E-05 ***

Prior-Alg -0.253 *** -0.195 *** -0.039 *** -0.0197 ***

Prior-Alg
2

1.3E-04 *** 4.7E-05 - -

Adjusted R
2

0.299 0.600 0.240 0.517

*** Significant at the .001

**   Significant at the .01

*     Significant at the .05

Note: "Reduced" equations are those excluding influential observations.
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Table A2. Predicted Residual Sums of Squares and Adjusted R
2
 Values

10-Year

APE ALPE

Model PRESS Adj. R
2

PRESS Adj. R
2

Pop. Size Simple 2,874,957 0.003 5,557,136 0.001

Growth Rate Simple 2,815,647 0.031 5,441,129 0.032

Pop. Size Complex 2,623,033 0.091 5,509,648 0.010

Growth Rate Complex 2,446,680 0.153 5,874,646 0.149

Model 1 2,192,807 0.242 5,886,284 0.149

Model 2 2,051,180 0.299 4,727,909 0.221

Model 3 2,002,676 0.313 4,806,092 0.232

Model 4 2,004,838 0.315 4,233,964 0.289

Model 5 1,956,223 0.329 4,286,873 0.299

Model 5 Excl. LnSize
2

1,966,905 0.324 - -

Model 5 Excl. GR
2
+GR

3
- - 4,127,578 0.269

20-Year

APE ALPE

Model PRESS Adj. R
2

PRESS Adj. R
2

Pop. Size Simple 6,771,000 0.002 13,569,684 0.003

Growth Rate Simple 6,709,976 0.017 13,425,879 0.024

Pop. Size Complex 6,342,378 0.065 13,449,513 0.011

Growth Rate Complex 5,934,604 0.126 16,300,276 0.164

Model 1 5,470,183 0.194 16,373,708 0.164

Model 2 5,339,080 0.214 16,104,498 0.166

Model 3 5,192,699 0.236 16,902,840 0.187

Model 4 5,049,198 0.257 14,843,484 0.220

Model 5 4,906,521 0.278 15,576,921 0.240

Model 5 Excl. LnSize
2

4,950,197 0.272 - -

Model 5 Excl. GR
2
+GR

3
- - 11,905,404 0.133  

 

 

 


